__alloc_work [Slap_vec] | |
__expose [Slap_mat] | |
__expose [Slap_vec] | |
__expose [Slap_size] | |
__unexpose [Slap_mat] | |
__unexpose [Slap_vec] | |
__unexpose [Slap_size] | |
__unexpose_norm [Slap_common] | |
__unexpose_side [Slap_common] | |
__unexpose_svd_job [Slap_common] | |
__unexpose_uplo [Slap_common] | |
__unexpose_with_ofs [Slap_vec] | |
A | |
add [Slap_C.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn) .
|
add [Slap_Z.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn) .
|
add [Slap_S.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn) .
|
add [Slap_D.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn) .
|
add [Slap_size] | add m n
|
add_const [Slap_C.Mat] | add_const c ?b a adds constant value c to all elements in a .
|
add_const [Slap_C.Vec] | add_const c ?y x adds constant value c to all elements in vector x .
|
add_const [Slap_Z.Mat] | add_const c ?b a adds constant value c to all elements in a .
|
add_const [Slap_Z.Vec] | add_const c ?y x adds constant value c to all elements in vector x .
|
add_const [Slap_S.Mat] | add_const c ?b a adds constant value c to all elements in a .
|
add_const [Slap_S.Vec] | add_const c ?y x adds constant value c to all elements in vector x .
|
add_const [Slap_D.Mat] | add_const c ?b a adds constant value c to all elements in a .
|
add_const [Slap_D.Vec] | add_const c ?y x adds constant value c to all elements in vector x .
|
amax [Slap_C] | amax x finds the maximum value of all elements in x .
|
amax [Slap_Z] | amax x finds the maximum value of all elements in x .
|
amax [Slap_S] | amax x finds the maximum value of all elements in x .
|
amax [Slap_D] | amax x finds the maximum value of all elements in x .
|
append [Slap_C.Vec] |
Concatenate two vectors.
|
append [Slap_Z.Vec] |
Concatenate two vectors.
|
append [Slap_S.Vec] |
Concatenate two vectors.
|
append [Slap_D.Vec] |
Concatenate two vectors.
|
append [Slap_vec] |
Concatenate two vectors.
|
as_vec [Slap_C.Mat] | as_vec a
|
as_vec [Slap_Z.Mat] | as_vec a
|
as_vec [Slap_S.Mat] | as_vec a
|
as_vec [Slap_D.Mat] | as_vec a
|
as_vec [Slap_mat] | as_vec a
|
asum [Slap_S] | asum x
|
asum [Slap_D] | asum x
|
axpy [Slap_C.Mat] | axpy ?alpha x y computes y := alpha * x + y .
|
axpy [Slap_C] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha ,
and vectors x and y .
|
axpy [Slap_Z.Mat] | axpy ?alpha x y computes y := alpha * x + y .
|
axpy [Slap_Z] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha ,
and vectors x and y .
|
axpy [Slap_S.Mat] | axpy ?alpha x y computes y := alpha * x + y .
|
axpy [Slap_S] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha ,
and vectors x and y .
|
axpy [Slap_D.Mat] | axpy ?alpha x y computes y := alpha * x + y .
|
axpy [Slap_D] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha ,
and vectors x and y .
|
C | |
char_of_diag [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
char_of_norm [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
char_of_side [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
char_of_svd_job [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
char_of_trans [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
char_of_uplo [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
check_cnt [Slap_mat] | |
check_cnt [Slap_vec] | |
check_side_dim [Slap_common] |
Auxiliary function (used internally)
|
cnt [Slap_C.Mat] |
Recover polymorphism of the fifth type parameter.
|
cnt [Slap_C.Vec] |
Recover polymorphism of the fourth type parameter.
|
cnt [Slap_Z.Mat] |
Recover polymorphism of the fifth type parameter.
|
cnt [Slap_Z.Vec] |
Recover polymorphism of the fourth type parameter.
|
cnt [Slap_S.Mat] |
Recover polymorphism of the fifth type parameter.
|
cnt [Slap_S.Vec] |
Recover polymorphism of the fourth type parameter.
|
cnt [Slap_D.Mat] |
Recover polymorphism of the fifth type parameter.
|
cnt [Slap_D.Vec] |
Recover polymorphism of the fourth type parameter.
|
cnt [Slap_mat] |
Recover polymorphism of the fifth type parameter.
|
cnt [Slap_vec] |
Recover polymorphism of the fourth type parameter.
|
col_dyn [Slap_C.Mat] | col_dyn a i
|
col_dyn [Slap_Z.Mat] | col_dyn a i
|
col_dyn [Slap_S.Mat] | col_dyn a i
|
col_dyn [Slap_D.Mat] | col_dyn a i
|
col_dyn [Slap_mat] | col_dyn a i
|
conjtr [Slap_common] |
Conjugate transpose of a matrix.
|
cons [Slap_C.Vec] | cons ?y e x adds element e at the beginning of vector x , and copies
it into y .
|
cons [Slap_Z.Vec] | cons ?y e x adds element e at the beginning of vector x , and copies
it into y .
|
cons [Slap_S.Vec] | cons ?y e x adds element e at the beginning of vector x , and copies
it into y .
|
cons [Slap_D.Vec] | cons ?y e x adds element e at the beginning of vector x , and copies
it into y .
|
cons [Slap_vec] | cons ?y e x adds element e at the beginning of vector x , and copies
it into y .
|
copy [Slap_C.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy .
|
copy [Slap_C.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy .
|
copy [Slap_C] | copy ?y x copies x into y .
|
copy [Slap_Z.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy .
|
copy [Slap_Z.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy .
|
copy [Slap_Z] | copy ?y x copies x into y .
|
copy [Slap_S.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy .
|
copy [Slap_S.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy .
|
copy [Slap_S] | copy ?y x copies x into y .
|
copy [Slap_D.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy .
|
copy [Slap_D.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy .
|
copy [Slap_D] | copy ?y x copies x into y .
|
copy [Slap_mat] | copy ?b a copies the matrix a into the matrix b .
|
copy [Slap_vec] | copy ?y x copies the vector x to the vector y .
|
copy_diag [Slap_C.Mat] | copy_diag a is Vec.copy (Mat.diag a) .
|
copy_diag [Slap_Z.Mat] | copy_diag a is Vec.copy (Mat.diag a) .
|
copy_diag [Slap_S.Mat] | copy_diag a is Vec.copy (Mat.diag a) .
|
copy_diag [Slap_D.Mat] | copy_diag a is Vec.copy (Mat.diag a) .
|
copy_diag_rect [Slap_C.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a) .
|
copy_diag_rect [Slap_Z.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a) .
|
copy_diag_rect [Slap_S.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a) .
|
copy_diag_rect [Slap_D.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a) .
|
copy_row_dyn [Slap_C.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i) .
|
copy_row_dyn [Slap_Z.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i) .
|
copy_row_dyn [Slap_S.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i) .
|
copy_row_dyn [Slap_D.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i) .
|
cos [Slap_S.Vec] | cos ?y (x1, x2, ..., xn) returns (cos x1, cos x2, ..., cos xn) .
|
cos [Slap_D.Vec] | cos ?y (x1, x2, ..., xn) returns (cos x1, cos x2, ..., cos xn) .
|
create [Slap_C.Mat] | create m n
|
create [Slap_C.Vec] | create n
|
create [Slap_Z.Mat] | create m n
|
create [Slap_Z.Vec] | create n
|
create [Slap_S.Mat] | create m n
|
create [Slap_S.Vec] | create n
|
create [Slap_D.Mat] | create m n
|
create [Slap_D.Vec] | create n
|
create [Slap_io.Context] | |
create [Slap_mat] | create kind m n
|
create [Slap_vec] | create kind n
|
create_array2 [Slap_mat] | |
create_int32_vec [Slap_common] | |
create_int_vec [Slap_common] | |
D | |
detri [Slap_C.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
detri [Slap_Z.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
detri [Slap_S.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
detri [Slap_D.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
diag [Slap_C.Mat] | diag a
|
diag [Slap_Z.Mat] | diag a
|
diag [Slap_S.Mat] | diag a
|
diag [Slap_D.Mat] | diag a
|
diag [Slap_mat] | diag a
|
diag_rect [Slap_C.Mat] | diag_rect a
|
diag_rect [Slap_Z.Mat] | diag_rect a
|
diag_rect [Slap_S.Mat] | diag_rect a
|
diag_rect [Slap_D.Mat] | diag_rect a
|
diag_rect [Slap_mat] | diag_rect a
|
dim [Slap_C.Mat] | dim a is (dim1 a, dim2 a) .
|
dim [Slap_C.Vec] | dim x
|
dim [Slap_Z.Mat] | dim a is (dim1 a, dim2 a) .
|
dim [Slap_Z.Vec] | dim x
|
dim [Slap_S.Mat] | dim a is (dim1 a, dim2 a) .
|
dim [Slap_S.Vec] | dim x
|
dim [Slap_D.Mat] | dim a is (dim1 a, dim2 a) .
|
dim [Slap_D.Vec] | dim x
|
dim [Slap_mat] | dim a is (dim1 a, dim2 a) .
|
dim [Slap_vec] | dim x
|
dim1 [Slap_C.Mat] | dim1 a
|
dim1 [Slap_Z.Mat] | dim1 a
|
dim1 [Slap_S.Mat] | dim1 a
|
dim1 [Slap_D.Mat] | dim1 a
|
dim1 [Slap_mat] | dim1 a
|
dim2 [Slap_C.Mat] | dim1 a
|
dim2 [Slap_Z.Mat] | dim1 a
|
dim2 [Slap_S.Mat] | dim1 a
|
dim2 [Slap_D.Mat] | dim1 a
|
dim2 [Slap_mat] | dim1 a
|
dim_array_array [Slap_mat] | dim_array_array aa returns Some (n_rows, n_cols) with the number of rows
n_rows and the number of columns n_cols of the given array of arrays.
|
dim_list_list [Slap_mat] | dim_list list ll returns Some (n_rows, n_cols) with the number of rows
n_rows and the number of columns n_cols of the given list of lists.
|
div [Slap_C.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn) .
|
div [Slap_Z.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn) .
|
div [Slap_S.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn) .
|
div [Slap_D.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn) .
|
div_dyn [Slap_size] | div_dyn m n
|
dot [Slap_S] | dot x y
|
dot [Slap_D] | dot x y
|
dotc [Slap_C] | dotc x y computes x^H y .
|
dotc [Slap_Z] | dotc x y computes x^H y .
|
dotu [Slap_C] | dotc x y computes x^T y .
|
dotu [Slap_Z] | dotc x y computes x^T y .
|
E | |
eight [Slap_size] | |
ellipsis_default [Slap_io.Context] |
default =
"..."
|
empty [Slap_C.Mat] |
An empty matrix.
|
empty [Slap_C.Vec] |
An empty vector.
|
empty [Slap_Z.Mat] |
An empty matrix.
|
empty [Slap_Z.Vec] |
An empty vector.
|
empty [Slap_S.Mat] |
An empty matrix.
|
empty [Slap_S.Vec] |
An empty vector.
|
empty [Slap_D.Mat] |
An empty matrix.
|
empty [Slap_D.Vec] |
An empty vector.
|
exists [Slap_C.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn) .
|
exists [Slap_Z.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn) .
|
exists [Slap_S.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn) .
|
exists [Slap_D.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn) .
|
exists [Slap_vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn) .
|
exists2 [Slap_C.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn) .
|
exists2 [Slap_Z.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn) .
|
exists2 [Slap_S.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn) .
|
exists2 [Slap_D.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn) .
|
exists2 [Slap_vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn) .
|
exp [Slap_S.Vec] | exp ?y (x1, x2, ..., xn) returns (exp x1, exp x2, ..., exp xn) .
|
exp [Slap_D.Vec] | exp ?y (x1, x2, ..., xn) returns (exp x1, exp x2, ..., exp xn) .
|
F | |
failwithf [Slap_misc] | failwith + printf -style format
|
fill [Slap_C.Mat] |
Fill the given matrix with the given value.
|
fill [Slap_C.Vec] |
Fill the given vector with the given value.
|
fill [Slap_Z.Mat] |
Fill the given matrix with the given value.
|
fill [Slap_Z.Vec] |
Fill the given vector with the given value.
|
fill [Slap_S.Mat] |
Fill the given matrix with the given value.
|
fill [Slap_S.Vec] |
Fill the given vector with the given value.
|
fill [Slap_D.Mat] |
Fill the given matrix with the given value.
|
fill [Slap_D.Vec] |
Fill the given vector with the given value.
|
fill [Slap_mat] |
Fill the given matrix with the given value.
|
fill [Slap_vec] |
Fill the given vector with the given value.
|
five [Slap_size] | |
fold_bottom [Slap_C.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottom [Slap_Z.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottom [Slap_S.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottom [Slap_D.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottom [Slap_mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottomi [Slap_C.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottomi [Slap_Z.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottomi [Slap_S.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottomi [Slap_D.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_bottomi [Slap_mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
fold_left [Slap_C.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_left [Slap_C.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn .
|
fold_left [Slap_Z.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_left [Slap_Z.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn .
|
fold_left [Slap_S.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_left [Slap_S.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn .
|
fold_left [Slap_D.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_left [Slap_D.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn .
|
fold_left [Slap_mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_left [Slap_vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn .
|
fold_left [Slap_size] | fold_left f init n is f (... (f (f init 1) 2) ...) n .
|
fold_left2 [Slap_C.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn .
|
fold_left2 [Slap_Z.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn .
|
fold_left2 [Slap_S.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn .
|
fold_left2 [Slap_D.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn .
|
fold_left2 [Slap_vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn .
|
fold_left3 [Slap_C.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn .
|
fold_left3 [Slap_Z.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn .
|
fold_left3 [Slap_S.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn .
|
fold_left3 [Slap_D.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn .
|
fold_left3 [Slap_vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn .
|
fold_lefti [Slap_C.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_lefti [Slap_C.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n .
|
fold_lefti [Slap_Z.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_lefti [Slap_Z.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n .
|
fold_lefti [Slap_S.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_lefti [Slap_S.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n .
|
fold_lefti [Slap_D.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_lefti [Slap_D.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n .
|
fold_lefti [Slap_mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
fold_lefti [Slap_vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n .
|
fold_lefti [Slap_size] | fold_lefti f init n is f (... (f (f init 1) 2) ...) (to_int n) .
|
fold_lefti2 [Slap_C.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n .
|
fold_lefti2 [Slap_Z.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n .
|
fold_lefti2 [Slap_S.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n .
|
fold_lefti2 [Slap_D.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n .
|
fold_lefti2 [Slap_vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n .
|
fold_lefti3 [Slap_C.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n .
|
fold_lefti3 [Slap_Z.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n .
|
fold_lefti3 [Slap_S.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n .
|
fold_lefti3 [Slap_D.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n .
|
fold_lefti3 [Slap_vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n .
|
fold_right [Slap_C.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_right [Slap_C.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)) .
|
fold_right [Slap_Z.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_right [Slap_Z.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)) .
|
fold_right [Slap_S.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_right [Slap_S.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)) .
|
fold_right [Slap_D.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_right [Slap_D.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)) .
|
fold_right [Slap_mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_right [Slap_vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)) .
|
fold_right [Slap_size] | fold_right f n init is f 1 (f 2 (... (f n init) ...)) .
|
fold_right2 [Slap_C.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)) .
|
fold_right2 [Slap_Z.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)) .
|
fold_right2 [Slap_S.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)) .
|
fold_right2 [Slap_D.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)) .
|
fold_right2 [Slap_vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)) .
|
fold_right3 [Slap_C.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)) .
|
fold_right3 [Slap_Z.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)) .
|
fold_right3 [Slap_S.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)) .
|
fold_right3 [Slap_D.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)) .
|
fold_right3 [Slap_vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)) .
|
fold_righti [Slap_C.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_righti [Slap_C.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n .
|
fold_righti [Slap_Z.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_righti [Slap_Z.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n .
|
fold_righti [Slap_S.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_righti [Slap_S.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n .
|
fold_righti [Slap_D.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_righti [Slap_D.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n .
|
fold_righti [Slap_mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
fold_righti [Slap_vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n .
|
fold_righti [Slap_size] | fold_righti f n init is f 1 (f 2 (... (f (to_int n) init) ...)) .
|
fold_righti2 [Slap_C.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n .
|
fold_righti2 [Slap_Z.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n .
|
fold_righti2 [Slap_S.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n .
|
fold_righti2 [Slap_D.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n .
|
fold_righti2 [Slap_vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n .
|
fold_righti3 [Slap_C.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n .
|
fold_righti3 [Slap_Z.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n .
|
fold_righti3 [Slap_S.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n .
|
fold_righti3 [Slap_D.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n .
|
fold_righti3 [Slap_vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n .
|
fold_top [Slap_C.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_top [Slap_Z.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_top [Slap_S.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_top [Slap_D.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_top [Slap_mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_topi [Slap_C.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_topi [Slap_Z.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_topi [Slap_S.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_topi [Slap_D.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
fold_topi [Slap_mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
for_all [Slap_C.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn) .
|
for_all [Slap_Z.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn) .
|
for_all [Slap_S.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn) .
|
for_all [Slap_D.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn) .
|
for_all [Slap_vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn) .
|
for_all2 [Slap_C.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn) .
|
for_all2 [Slap_Z.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn) .
|
for_all2 [Slap_S.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn) .
|
for_all2 [Slap_D.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn) .
|
for_all2 [Slap_vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn) .
|
four [Slap_size] | |
G | |
gbmv [Slap_C] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
gbmv [Slap_Z] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
gbmv [Slap_S] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
gbmv [Slap_D] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
gbsv [Slap_C] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n -by-'n band matrix, each column of matrix B is the
r.h.s.
|
gbsv [Slap_Z] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n -by-'n band matrix, each column of matrix B is the
r.h.s.
|
gbsv [Slap_S] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n -by-'n band matrix, each column of matrix B is the
r.h.s.
|
gbsv [Slap_D] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n -by-'n band matrix, each column of matrix B is the
r.h.s.
|
geband_dyn [Slap_C.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
geband_dyn [Slap_Z.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
geband_dyn [Slap_S.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
geband_dyn [Slap_D.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
geband_dyn [Slap_mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
geband_dyn [Slap_size] | geband_dyn m n kl ku computs the band storage size of m -by-n band
matrices with kl subdiagonals and ku superdiagonals.
|
gecon [Slap_S] | gecon ?norm ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of general matrix a .
|
gecon [Slap_D] | gecon ?norm ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of general matrix a .
|
gecon_min_liwork [Slap_S] | gecon_min_liwork n computes the minimum length of workspace iwork for
gecon routine.
|
gecon_min_liwork [Slap_D] | gecon_min_liwork n computes the minimum length of workspace iwork for
gecon routine.
|
gecon_min_lwork [Slap_S] | gecon_min_lwork n computes the minimum length of workspace work for
gecon routine.
|
gecon_min_lwork [Slap_D] | gecon_min_lwork n computes the minimum length of workspace work for
gecon routine.
|
geev [Slap_S] | geev ?work ?vl ?vr ?wr ?wi a computes the eigenvalues and the left and
right eigenvectors of 'n -by-'n nonsymmetric matrix a :
|
geev [Slap_D] | geev ?work ?vl ?vr ?wr ?wi a computes the eigenvalues and the left and
right eigenvectors of 'n -by-'n nonsymmetric matrix a :
|
geev_min_lwork [Slap_S] | geev_min_lwork ?vectors n computes the minimum length of workspace for
geev routine.
|
geev_min_lwork [Slap_D] | geev_min_lwork ?vectors n computes the minimum length of workspace for
geev routine.
|
geev_opt_lwork [Slap_S] | geev_opt_lwork ?vl ?vr ?wr ?vi a computes the optimum length of workspace
for geev routine.
|
geev_opt_lwork [Slap_D] | geev_opt_lwork ?vl ?vr ?wr ?vi a computes the optimum length of workspace
for geev routine.
|
gels [Slap_C] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
gels [Slap_Z] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
gels [Slap_S] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
gels [Slap_D] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
gels_min_lwork [Slap_C] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
gels_min_lwork [Slap_Z] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
gels_min_lwork [Slap_S] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
gels_min_lwork [Slap_D] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
gels_opt_lwork [Slap_C] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
gels_opt_lwork [Slap_Z] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
gels_opt_lwork [Slap_S] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
gels_opt_lwork [Slap_D] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
gelsd [Slap_S] | gelsd a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x|| ) using the singular
value decomposition (SVD) of a and a divide and conquer method.
|
gelsd [Slap_D] | gelsd a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x|| ) using the singular
value decomposition (SVD) of a and a divide and conquer method.
|
gelsd_min_iwork [Slap_S] | gelsd_min_iwork ~m ~n ~nrhs computes the minimum length of workspace
iwork for gelsd routine.
|
gelsd_min_iwork [Slap_D] | gelsd_min_iwork ~m ~n ~nrhs computes the minimum length of workspace
iwork for gelsd routine.
|
gelsd_min_lwork [Slap_S] | gelsd_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsd routine.
|
gelsd_min_lwork [Slap_D] | gelsd_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsd routine.
|
gelsd_opt_lwork [Slap_S] | gelsd_opt_lwork a b computes the optimum length of workspace for
gelsd routine.
|
gelsd_opt_lwork [Slap_D] | gelsd_opt_lwork a b computes the optimum length of workspace for
gelsd routine.
|
gelss [Slap_S] | gelss a ?rcond ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x|| ) using the singular
value decomposition (SVD) of a .
|
gelss [Slap_D] | gelss a ?rcond ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x|| ) using the singular
value decomposition (SVD) of a .
|
gelss_min_lwork [Slap_S] | gelss_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelss routine.
|
gelss_min_lwork [Slap_D] | gelss_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelss routine.
|
gelss_opt_lwork [Slap_S] | gelss_min_lwork a b computes the optimum length of workspace for
gelss routine.
|
gelss_opt_lwork [Slap_D] | gelss_min_lwork a b computes the optimum length of workspace for
gelss routine.
|
gelsy [Slap_S] | gelsy a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x|| ) using a complete
orthogonal factorization of a .
|
gelsy [Slap_D] | gelsy a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x|| ) using a complete
orthogonal factorization of a .
|
gelsy_min_lwork [Slap_S] | gelsy_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsy routine.
|
gelsy_min_lwork [Slap_D] | gelsy_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsy routine.
|
gelsy_opt_lwork [Slap_S] | gelsy_opt_lwork a b computes the optimum length of workspace for
gelsy routine.
|
gelsy_opt_lwork [Slap_D] | gelsy_opt_lwork a b computes the optimum length of workspace for
gelsy routine.
|
gemm [Slap_C] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c .
|
gemm [Slap_Z] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c .
|
gemm [Slap_S] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c .
|
gemm [Slap_D] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c .
|
gemm_diag [Slap_C.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x , and
OP(x) is one of OP(x) = x , OP(x) = x^T , or OP(x) = x^H
(the conjugate transpose of x ).
|
gemm_diag [Slap_Z.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x , and
OP(x) is one of OP(x) = x , OP(x) = x^T , or OP(x) = x^H
(the conjugate transpose of x ).
|
gemm_diag [Slap_S.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x , and
OP(x) is one of OP(x) = x , OP(x) = x^T , or OP(x) = x^H
(the conjugate transpose of x ).
|
gemm_diag [Slap_D.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x , and
OP(x) is one of OP(x) = x , OP(x) = x^T , or OP(x) = x^H
(the conjugate transpose of x ).
|
gemm_trace [Slap_C.Mat] | gemm_trace ~transa a ~transb b
|
gemm_trace [Slap_Z.Mat] | gemm_trace ~transa a ~transb b
|
gemm_trace [Slap_S.Mat] | gemm_trace ~transa a ~transb b
|
gemm_trace [Slap_D.Mat] | gemm_trace ~transa a ~transb b
|
gemv [Slap_C] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y .
|
gemv [Slap_Z] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y .
|
gemv [Slap_S] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y .
|
gemv [Slap_D] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y .
|
geqrf [Slap_C] | geqrf ?work ?tau a computes the QR factorization of general matrix a :
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
geqrf [Slap_Z] | geqrf ?work ?tau a computes the QR factorization of general matrix a :
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
geqrf [Slap_S] | geqrf ?work ?tau a computes the QR factorization of general matrix a :
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
geqrf [Slap_D] | geqrf ?work ?tau a computes the QR factorization of general matrix a :
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
geqrf_min_lwork [Slap_C] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
geqrf_min_lwork [Slap_Z] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
geqrf_min_lwork [Slap_S] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
geqrf_min_lwork [Slap_D] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
geqrf_opt_lwork [Slap_C] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
geqrf_opt_lwork [Slap_Z] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
geqrf_opt_lwork [Slap_S] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
geqrf_opt_lwork [Slap_D] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
ger [Slap_S] | ger ?alpha x y a computes a := alpha * x * y^T + a with
the general matrix a , the vector x and
the transposed vector y^T of y .
|
ger [Slap_D] | ger ?alpha x y a computes a := alpha * x * y^T + a with
the general matrix a , the vector x and
the transposed vector y^T of y .
|
gesdd [Slap_S] | gesdd ~jobz ?s ?u ?vt ?work ?iwork a computes the singular value
decomposition (SVD) of general rectangular matrix a using a divide and
conquer method: a = U * D * V^T where
|
gesdd [Slap_D] | gesdd ~jobz ?s ?u ?vt ?work ?iwork a computes the singular value
decomposition (SVD) of general rectangular matrix a using a divide and
conquer method: a = U * D * V^T where
|
gesdd_liwork [Slap_S] | gesdd_liwork ~m ~n computes the length of workspace iwork for
gesdd routine.
|
gesdd_liwork [Slap_D] | gesdd_liwork ~m ~n computes the length of workspace iwork for
gesdd routine.
|
gesdd_min_lwork [Slap_S] | gesdd_min_lwork ~m ~n computes the minimum length of workspace work for
gesdd routine.
|
gesdd_min_lwork [Slap_D] | gesdd_min_lwork ~m ~n computes the minimum length of workspace work for
gesdd routine.
|
gesdd_opt_lwork [Slap_S] | gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a computes the optimum length of
workspace work for gesdd routine.
|
gesdd_opt_lwork [Slap_D] | gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a computes the optimum length of
workspace work for gesdd routine.
|
gesv [Slap_C] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n -by-'n general matrix, each column of matrix b is the r.h.s.
|
gesv [Slap_Z] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n -by-'n general matrix, each column of matrix b is the r.h.s.
|
gesv [Slap_S] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n -by-'n general matrix, each column of matrix b is the r.h.s.
|
gesv [Slap_D] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n -by-'n general matrix, each column of matrix b is the r.h.s.
|
gesvd [Slap_S] | gesvd ?jobu ?jobvt ?s ?u ?vt ?work a computes the singular value
decomposition (SVD) of 'm -by-'n general rectangular matrix a :
a = U * D * V^T where
|
gesvd [Slap_D] | gesvd ?jobu ?jobvt ?s ?u ?vt ?work a computes the singular value
decomposition (SVD) of 'm -by-'n general rectangular matrix a :
a = U * D * V^T where
|
gesvd_min_lwork [Slap_S] | gesvd_min_lwork ~m ~n computes the minimum length of workspace for
gesvd routine.
|
gesvd_min_lwork [Slap_D] | gesvd_min_lwork ~m ~n computes the minimum length of workspace for
gesvd routine.
|
gesvd_opt_lwork [Slap_S] | gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt computes the optimum length of
workspace for gesvd routine.
|
gesvd_opt_lwork [Slap_D] | gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt computes the optimum length of
workspace for gesvd routine.
|
get_dyn [Slap_C.Mat] | get_dyn a i j
|
get_dyn [Slap_C.Vec] | get_dyn x i
|
get_dyn [Slap_Z.Mat] | get_dyn a i j
|
get_dyn [Slap_Z.Vec] | get_dyn x i
|
get_dyn [Slap_S.Mat] | get_dyn a i j
|
get_dyn [Slap_S.Vec] | get_dyn x i
|
get_dyn [Slap_D.Mat] | get_dyn a i j
|
get_dyn [Slap_D.Vec] | get_dyn x i
|
get_dyn [Slap_mat] | get_dyn a i j
|
get_dyn [Slap_vec] | get_dyn x i
|
get_transposed_dim [Slap_common] | get_transposed_dim trans m n returns (m * n) if trans is Slap_common.normal ;, (n * m) if trans is Slap_common.trans or Slap_common.conjtr .
|
getrf [Slap_C] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
getrf [Slap_Z] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
getrf [Slap_S] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
getrf [Slap_D] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
getri [Slap_C] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
getri [Slap_Z] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
getri [Slap_S] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
getri [Slap_D] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
getri_min_lwork [Slap_C] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
getri_min_lwork [Slap_Z] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
getri_min_lwork [Slap_S] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
getri_min_lwork [Slap_D] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
getri_opt_lwork [Slap_C] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
getri_opt_lwork [Slap_Z] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
getri_opt_lwork [Slap_S] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
getri_opt_lwork [Slap_D] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
getrs [Slap_C] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n -by-'n general matrix, each column of matrix b is the
r.h.s.
|
getrs [Slap_Z] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n -by-'n general matrix, each column of matrix b is the
r.h.s.
|
getrs [Slap_S] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n -by-'n general matrix, each column of matrix b is the
r.h.s.
|
getrs [Slap_D] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n -by-'n general matrix, each column of matrix b is the
r.h.s.
|
H | |
hd [Slap_C.Vec] | |
hd [Slap_Z.Vec] | |
hd [Slap_S.Vec] | |
hd [Slap_D.Vec] | |
hd [Slap_vec] | |
hd_dyn [Slap_C.Vec] | |
hd_dyn [Slap_Z.Vec] | |
hd_dyn [Slap_S.Vec] | |
hd_dyn [Slap_D.Vec] | |
hd_dyn [Slap_vec] | |
horizontal_default [Slap_io.Context] |
- If
Some n , the first n columns and the last n columns of a table
are printed.
|
I | |
iamax [Slap_C] | iamax x returns the index of the maximum value of all elements in x .
|
iamax [Slap_Z] | iamax x returns the index of the maximum value of all elements in x .
|
iamax [Slap_S] | iamax x returns the index of the maximum value of all elements in x .
|
iamax [Slap_D] | iamax x returns the index of the maximum value of all elements in x .
|
identity [Slap_misc] |
The identity function.
|
identity [Slap_C.Mat] | identity n
|
identity [Slap_Z.Mat] | identity n
|
identity [Slap_S.Mat] | identity n
|
identity [Slap_D.Mat] | identity n
|
init [Slap_C.Mat] |
An alias of
init_cols .
|
init [Slap_C.Vec] | init n f
|
init [Slap_Z.Mat] |
An alias of
init_cols .
|
init [Slap_Z.Vec] | init n f
|
init [Slap_S.Mat] |
An alias of
init_cols .
|
init [Slap_S.Vec] | init n f
|
init [Slap_D.Mat] |
An alias of
init_cols .
|
init [Slap_D.Vec] | init n f
|
init [Slap_mat] |
An alias of
init_cols .
|
init [Slap_vec] | init kind n f
|
init_cols [Slap_C.Mat] | init_cols m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_cols [Slap_Z.Mat] | init_cols m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_cols [Slap_S.Mat] | init_cols m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_cols [Slap_D.Mat] | init_cols m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_cols [Slap_mat] | init_cols kind m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_rows [Slap_C.Mat] | init_rows m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_rows [Slap_Z.Mat] | init_rows m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_rows [Slap_S.Mat] | init_rows m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_rows [Slap_D.Mat] | init_rows m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
init_rows [Slap_mat] | init_rows kind m n f returns a fresh m -by-n matrix whose
the (i,j) element is initialized by the result of calling f i j .
|
inits [Slap_C.Vec] | |
inits [Slap_Z.Vec] | |
inits [Slap_S.Vec] | |
inits [Slap_D.Vec] | |
inits [Slap_vec] | |
inits_dyn [Slap_C.Vec] | |
inits_dyn [Slap_Z.Vec] | |
inits_dyn [Slap_S.Vec] | |
inits_dyn [Slap_D.Vec] | |
inits_dyn [Slap_vec] | |
invalid_argf [Slap_misc] | invalid_arg + printf -style format
|
iszero [Slap_size] | iszero n returns true if size n is zero.
|
iter [Slap_C.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn .
|
iter [Slap_Z.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn .
|
iter [Slap_S.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn .
|
iter [Slap_D.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn .
|
iter [Slap_vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn .
|
iter [Slap_size] | iter f n is f 1; f 2; ...; f n .
|
iter2 [Slap_C.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn .
|
iter2 [Slap_Z.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn .
|
iter2 [Slap_S.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn .
|
iter2 [Slap_D.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn .
|
iter2 [Slap_vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn .
|
iter3 [Slap_C.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn .
|
iter3 [Slap_Z.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn .
|
iter3 [Slap_S.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn .
|
iter3 [Slap_D.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn .
|
iter3 [Slap_vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn .
|
iteri [Slap_C.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn .
|
iteri [Slap_Z.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn .
|
iteri [Slap_S.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn .
|
iteri [Slap_D.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn .
|
iteri [Slap_vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn .
|
iteri [Slap_size] | iteri f n is f 1; f 2; ...; f (to_int n) .
|
iteri2 [Slap_C.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn .
|
iteri2 [Slap_Z.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn .
|
iteri2 [Slap_S.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn .
|
iteri2 [Slap_D.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn .
|
iteri2 [Slap_vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn .
|
iteri3 [Slap_C.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn .
|
iteri3 [Slap_Z.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn .
|
iteri3 [Slap_S.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn .
|
iteri3 [Slap_D.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn .
|
iteri3 [Slap_vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn .
|
K | |
kind [Slap_mat] | |
kind [Slap_vec] | |
L | |
lacaml_svd_job [Slap_common] | |
lacaml_trans2 [Slap_common] | |
lacaml_trans3 [Slap_common] | |
lacpy [Slap_C] | lacpy ?uplo ?b a copies the matrix a into the matrix b .
|
lacpy [Slap_Z] | lacpy ?uplo ?b a copies the matrix a into the matrix b .
|
lacpy [Slap_S] | lacpy ?uplo ?b a copies the matrix a into the matrix b .
|
lacpy [Slap_D] | lacpy ?uplo ?b a copies the matrix a into the matrix b .
|
lamch [Slap_S] | lamch cmach see LAPACK documentation.
|
lamch [Slap_D] | lamch cmach see LAPACK documentation.
|
lange [Slap_C] | lange ?norm ?work a
|
lange [Slap_Z] | lange ?norm ?work a
|
lange [Slap_S] | lange ?norm ?work a
|
lange [Slap_D] | lange ?norm ?work a
|
lange_min_lwork [Slap_C] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
lange_min_lwork [Slap_Z] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
lange_min_lwork [Slap_S] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
lange_min_lwork [Slap_D] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
lansy [Slap_S] | lansy ?up ?norm ?work a
|
lansy [Slap_D] | lansy ?up ?norm ?work a
|
lansy_min_lwork [Slap_S] | lansy_min_lwork n norm computes the minimum length of workspace for
lansy routine.
|
lansy_min_lwork [Slap_D] | lansy_min_lwork n norm computes the minimum length of workspace for
lansy routine.
|
larnv [Slap_C] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed .
|
larnv [Slap_Z] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed .
|
larnv [Slap_S] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed .
|
larnv [Slap_D] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed .
|
lassq [Slap_C] | lassq ?scale ?sumsq x
|
lassq [Slap_Z] | lassq ?scale ?sumsq x
|
lassq [Slap_S] | lassq ?scale ?sumsq x
|
lassq [Slap_D] | lassq ?scale ?sumsq x
|
last [Slap_C.Vec] | |
last [Slap_Z.Vec] | |
last [Slap_S.Vec] | |
last [Slap_D.Vec] | |
last [Slap_vec] | |
last_dyn [Slap_C.Vec] | |
last_dyn [Slap_Z.Vec] | |
last_dyn [Slap_S.Vec] | |
last_dyn [Slap_D.Vec] | |
last_dyn [Slap_vec] | |
lauum [Slap_C] | lauum ?up a computes
|
lauum [Slap_Z] | lauum ?up a computes
|
lauum [Slap_S] | lauum ?up a computes
|
lauum [Slap_D] | lauum ?up a computes
|
left [Slap_common] |
Left multiplication
|
log [Slap_S.Vec] | log ?y (x1, x2, ..., xn) returns (log x1, log x2, ..., log xn) .
|
log [Slap_D.Vec] | log ?y (x1, x2, ..., xn) returns (log x1, log x2, ..., log xn) .
|
lower [Slap_common] |
Using the lower triangular (or trapezoidal) part of a matrix.
|
lsc [Slap_io.Toplevel] |
An alias of
ssc for compatibility with Lacaml.
|
luband_dyn [Slap_C.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
luband_dyn [Slap_Z.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
luband_dyn [Slap_S.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
luband_dyn [Slap_D.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
luband_dyn [Slap_mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
luband_dyn [Slap_size] | luband_dyn m n kl ku computs the band storage size for LU factorization of
m -by-n band matrices with kl subdiagonals and ku superdiagonals.
|
M | |
major [Slap_version] |
The major version of SLAP.
|
make [Slap_C.Mat] | make m n x
|
make [Slap_C.Vec] | make n a
|
make [Slap_Z.Mat] | make m n x
|
make [Slap_Z.Vec] | make n a
|
make [Slap_S.Mat] | make m n x
|
make [Slap_S.Vec] | make n a
|
make [Slap_D.Mat] | make m n x
|
make [Slap_D.Vec] | make n a
|
make [Slap_mat] | make kind m n x
|
make [Slap_vec] | make kind n a
|
make0 [Slap_C.Mat] | make0 m n
|
make0 [Slap_C.Vec] | zeros n
|
make0 [Slap_Z.Mat] | make0 m n
|
make0 [Slap_Z.Vec] | zeros n
|
make0 [Slap_S.Mat] | make0 m n
|
make0 [Slap_S.Vec] | zeros n
|
make0 [Slap_D.Mat] | make0 m n
|
make0 [Slap_D.Vec] | zeros n
|
make1 [Slap_C.Mat] | make1 m n
|
make1 [Slap_C.Vec] | make1 n
|
make1 [Slap_Z.Mat] | make1 m n
|
make1 [Slap_Z.Vec] | make1 n
|
make1 [Slap_S.Mat] | make1 m n
|
make1 [Slap_S.Vec] | make1 n
|
make1 [Slap_D.Mat] | make1 m n
|
make1 [Slap_D.Vec] | make1 n
|
map [Slap_C.Mat] | |
map [Slap_C.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn) .
|
map [Slap_Z.Mat] | |
map [Slap_Z.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn) .
|
map [Slap_S.Mat] | |
map [Slap_S.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn) .
|
map [Slap_D.Mat] | |
map [Slap_D.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn) .
|
map [Slap_mat] | |
map [Slap_vec] | map kind f ?y (x1, ..., xn) is (f x1, ..., f xn) .
|
map2 [Slap_C.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn) .
|
map2 [Slap_Z.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn) .
|
map2 [Slap_S.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn) .
|
map2 [Slap_D.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn) .
|
map2 [Slap_vec] | map2 kind f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn) .
|
map3 [Slap_C.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn) .
|
map3 [Slap_Z.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn) .
|
map3 [Slap_S.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn) .
|
map3 [Slap_D.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn) .
|
map3 [Slap_vec] | map3 kind f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn) .
|
mapi [Slap_C.Mat] | |
mapi [Slap_C.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n .
|
mapi [Slap_Z.Mat] | |
mapi [Slap_Z.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n .
|
mapi [Slap_S.Mat] | |
mapi [Slap_S.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n .
|
mapi [Slap_D.Mat] | |
mapi [Slap_D.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n .
|
mapi [Slap_mat] | |
mapi [Slap_vec] | mapi kind f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n .
|
mapi2 [Slap_C.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n .
|
mapi2 [Slap_Z.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n .
|
mapi2 [Slap_S.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n .
|
mapi2 [Slap_D.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n .
|
mapi2 [Slap_vec] | mapi2 kind f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n .
|
mapi3 [Slap_C.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n .
|
mapi3 [Slap_Z.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n .
|
mapi3 [Slap_S.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n .
|
mapi3 [Slap_D.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n .
|
mapi3 [Slap_vec] | mapi3 kind f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n .
|
max [Slap_C.Vec] | max x
|
max [Slap_Z.Vec] | max x
|
max [Slap_S.Vec] | max x
|
max [Slap_D.Vec] | max x
|
max [Slap_size] | max m n
|
mem [Slap_vec] | mem ?equal a v
|
micro [Slap_version] |
The micro version of SLAP.
|
min [Slap_C.Vec] | min x
|
min [Slap_Z.Vec] | min x
|
min [Slap_S.Vec] | min x
|
min [Slap_D.Vec] | min x
|
min [Slap_size] | min m n
|
minor [Slap_version] |
The minor version of SLAP.
|
mul [Slap_C.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn) .
|
mul [Slap_Z.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn) .
|
mul [Slap_S.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn) .
|
mul [Slap_D.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn) .
|
mul [Slap_size] | mul m n
|
N | |
neg [Slap_C.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn) .
|
neg [Slap_Z.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn) .
|
neg [Slap_S.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn) .
|
neg [Slap_D.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn) .
|
nine [Slap_size] | |
non_unit [Slap_common] |
A matrix is not unit triagular.
|
nonzero [Slap_size] | nonzero n returns true if size n is not zero.
|
norm_1 [Slap_common] |
1-norm of a matrix (maximum column sum).
|
norm_amax [Slap_common] |
Largest absolute value of a matrix.
|
norm_frob [Slap_common] |
Frobenius norm of a matrix.
|
norm_inf [Slap_common] |
Infinity-norm of a matrix (maximum row sum).
|
normal [Slap_common] |
Non-transposed matrix.
|
nrm2 [Slap_C] | nrm2 x retruns the L2 norm of vector x : ||x|| .
|
nrm2 [Slap_Z] | nrm2 x retruns the L2 norm of vector x : ||x|| .
|
nrm2 [Slap_S] | nrm2 x retruns the L2 norm of vector x : ||x|| .
|
nrm2 [Slap_D] | nrm2 x retruns the L2 norm of vector x : ||x|| .
|
O | |
of_array [Slap_C.Mat] | module M = (val of_array aa : CNTMAT)
|
of_array [Slap_C.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
of_array [Slap_Z.Mat] | module M = (val of_array aa : CNTMAT)
|
of_array [Slap_Z.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
of_array [Slap_S.Mat] | module M = (val of_array aa : CNTMAT)
|
of_array [Slap_S.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
of_array [Slap_D.Mat] | module M = (val of_array aa : CNTMAT)
|
of_array [Slap_D.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
of_array_c [Slap_C.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
of_array_c [Slap_C.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
of_array_c [Slap_Z.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
of_array_c [Slap_Z.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
of_array_c [Slap_S.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
of_array_c [Slap_S.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
of_array_c [Slap_D.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
of_array_c [Slap_D.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
of_array_c [Slap_mat] | let MAT n = of_array_c kind arr
|
of_array_c [Slap_vec] | let VEC n = of_array_c kind [|a1; ...; an|]
|
of_array_dyn [Slap_C.Mat] |
Build a matrix initialized from the given array of arrays.
|
of_array_dyn [Slap_C.Vec] | of_array_dyn n [|a1; ...; an|]
|
of_array_dyn [Slap_Z.Mat] |
Build a matrix initialized from the given array of arrays.
|
of_array_dyn [Slap_Z.Vec] | of_array_dyn n [|a1; ...; an|]
|
of_array_dyn [Slap_S.Mat] |
Build a matrix initialized from the given array of arrays.
|
of_array_dyn [Slap_S.Vec] | of_array_dyn n [|a1; ...; an|]
|
of_array_dyn [Slap_D.Mat] |
Build a matrix initialized from the given array of arrays.
|
of_array_dyn [Slap_D.Vec] | of_array_dyn n [|a1; ...; an|]
|
of_array_dyn [Slap_mat] |
Build a matrix initialized from the given array of arrays.
|
of_array_dyn [Slap_vec] | of_array_dyn kind n [|a1; ...; an|]
|
of_bigarray [Slap_C.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
of_bigarray [Slap_C.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
of_bigarray [Slap_Z.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
of_bigarray [Slap_Z.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
of_bigarray [Slap_S.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
of_bigarray [Slap_S.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
of_bigarray [Slap_D.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
of_bigarray [Slap_D.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
of_bigarray_c [Slap_C.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_C.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_Z.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_Z.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_S.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_S.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_D.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_D.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_mat] | let MAT n = of_bigarray_c ?share ba
|
of_bigarray_c [Slap_vec] | let VEC n = of_bigarray_c ?share ba
|
of_bigarray_dyn [Slap_C.Mat] | of_bigarray_dyn ?share m n ba
|
of_bigarray_dyn [Slap_C.Vec] | of_bigarray_dyn ?share n ba
|
of_bigarray_dyn [Slap_Z.Mat] | of_bigarray_dyn ?share m n ba
|
of_bigarray_dyn [Slap_Z.Vec] | of_bigarray_dyn ?share n ba
|
of_bigarray_dyn [Slap_S.Mat] | of_bigarray_dyn ?share m n ba
|
of_bigarray_dyn [Slap_S.Vec] | of_bigarray_dyn ?share n ba
|
of_bigarray_dyn [Slap_D.Mat] | of_bigarray_dyn ?share m n ba
|
of_bigarray_dyn [Slap_D.Vec] | of_bigarray_dyn ?share n ba
|
of_bigarray_dyn [Slap_mat] | of_bigarray_dyn ?share m n ba
|
of_bigarray_dyn [Slap_vec] | of_bigarray_dyn ?share n ba
|
of_col_vecs_dyn [Slap_C.Mat] | |
of_col_vecs_dyn [Slap_Z.Mat] | |
of_col_vecs_dyn [Slap_S.Mat] | |
of_col_vecs_dyn [Slap_D.Mat] | |
of_int_c_dyn [Slap_size] | let SIZE n = of_int_c_dyn i
|
of_int_dyn [Slap_size] | module N = (val of_int_dyn n : SIZE)
|
of_list [Slap_C.Mat] | module M = (val of_list ll : CNTMAT)
|
of_list [Slap_C.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
of_list [Slap_Z.Mat] | module M = (val of_list ll : CNTMAT)
|
of_list [Slap_Z.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
of_list [Slap_S.Mat] | module M = (val of_list ll : CNTMAT)
|
of_list [Slap_S.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
of_list [Slap_D.Mat] | module M = (val of_list ll : CNTMAT)
|
of_list [Slap_D.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
of_list_c [Slap_C.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
of_list_c [Slap_C.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
of_list_c [Slap_Z.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
of_list_c [Slap_Z.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
of_list_c [Slap_S.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
of_list_c [Slap_S.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
of_list_c [Slap_D.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
of_list_c [Slap_D.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
of_list_c [Slap_mat] | let MAT n = of_list_c kind lst
|
of_list_c [Slap_vec] | let VEC n = of_list_c kind [a1; ...; an]
|
of_list_dyn [Slap_C.Mat] |
Build a matrix initialized from the given list of lists.
|
of_list_dyn [Slap_C.Vec] | of_list_dyn n [a1; ...; an]
|
of_list_dyn [Slap_Z.Mat] |
Build a matrix initialized from the given list of lists.
|
of_list_dyn [Slap_Z.Vec] | of_list_dyn n [a1; ...; an]
|
of_list_dyn [Slap_S.Mat] |
Build a matrix initialized from the given list of lists.
|
of_list_dyn [Slap_S.Vec] | of_list_dyn n [a1; ...; an]
|
of_list_dyn [Slap_D.Mat] |
Build a matrix initialized from the given list of lists.
|
of_list_dyn [Slap_D.Vec] | of_list_dyn n [a1; ...; an]
|
of_list_dyn [Slap_mat] |
Build a matrix initialized from the given list of lists.
|
of_list_dyn [Slap_vec] | of_list_dyn kind n [a1; ...; an]
|
one [Slap_size] | |
opt_cnt_vec [Slap_vec] | |
opt_cnt_vec_alloc [Slap_vec] | |
opt_mat [Slap_mat] | |
opt_mat_alloc [Slap_mat] | |
opt_vec [Slap_vec] | |
opt_vec_alloc [Slap_vec] | |
opt_work [Slap_vec] | |
orgqr_dyn [Slap_S] | orgqr_dyn ?work ~tau a generates the orthogonal matrix Q of the QR
factorization formed by geqrf /geqpf .
|
orgqr_dyn [Slap_D] | orgqr_dyn ?work ~tau a generates the orthogonal matrix Q of the QR
factorization formed by geqrf /geqpf .
|
orgqr_min_lwork [Slap_S] | orgqr_min_lwork ~n computes the minimum length of workspace for
orgqr routine.
|
orgqr_min_lwork [Slap_D] | orgqr_min_lwork ~n computes the minimum length of workspace for
orgqr routine.
|
orgqr_opt_lwork [Slap_S] | orgqr_min_lwork ~tau a computes the optimum length of workspace for
orgqr routine.
|
orgqr_opt_lwork [Slap_D] | orgqr_min_lwork ~tau a computes the optimum length of workspace for
orgqr routine.
|
ormqr_dyn [Slap_S] | ormqr_dyn ~side ~trans ?work ~tau a c multiplies a matrix c by the
orthogonal matrix Q of the QR factorization formed by geqrf /geqpf :
|
ormqr_dyn [Slap_D] | ormqr_dyn ~side ~trans ?work ~tau a c multiplies a matrix c by the
orthogonal matrix Q of the QR factorization formed by geqrf /geqpf :
|
ormqr_min_lwork [Slap_S] | ormqr_min_lwork ~side ~m ~n computes the minimum length of workspace for
ormqr routine.
|
ormqr_min_lwork [Slap_D] | ormqr_min_lwork ~side ~m ~n computes the minimum length of workspace for
ormqr routine.
|
ormqr_opt_lwork [Slap_S] | ormqr_opt_lwork ~side ~trans ~tau a c computes the optimum length of
workspace for ormqr routine.
|
ormqr_opt_lwork [Slap_D] | ormqr_opt_lwork ~side ~trans ~tau a c computes the optimum length of
workspace for ormqr routine.
|
P | |
packed [Slap_C.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
packed [Slap_Z.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
packed [Slap_S.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
packed [Slap_D.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
packed [Slap_mat] | packed ?up ?x a transforms triangular matrix a into packed storage
format.
|
packed [Slap_size] | packed n computes the packed storage size of a n -by-n matrix.
|
pbsv [Slap_C] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n -by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
pbsv [Slap_Z] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n -by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
pbsv [Slap_S] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n -by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
pbsv [Slap_D] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n -by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
pocon [Slap_S] | pocon ?up ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric positive-definite matrix a .
|
pocon [Slap_D] | pocon ?up ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric positive-definite matrix a .
|
pocon_min_liwork [Slap_S] | pocon_min_liwork n computes the minimum length of workspace iwork for
pocon routine.
|
pocon_min_liwork [Slap_D] | pocon_min_liwork n computes the minimum length of workspace iwork for
pocon routine.
|
pocon_min_lwork [Slap_S] | pocon_min_lwork n computes the minimum length of workspace work for
pocon routine.
|
pocon_min_lwork [Slap_D] | pocon_min_lwork n computes the minimum length of workspace work for
pocon routine.
|
posv [Slap_C] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
posv [Slap_Z] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
posv [Slap_S] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
posv [Slap_D] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
potrf [Slap_C] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a :
|
potrf [Slap_Z] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a :
|
potrf [Slap_S] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a :
|
potrf [Slap_D] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a :
|
potri [Slap_C] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
potri [Slap_Z] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
potri [Slap_S] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
potri [Slap_D] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
potrs [Slap_C] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a :
|
potrs [Slap_Z] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a :
|
potrs [Slap_S] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a :
|
potrs [Slap_D] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a :
|
pp_cmat [Slap_io.Toplevel] | |
pp_cmat [Slap_io] | |
pp_complex_el_default [Slap_io] | fprintf ppf "(%G, %Gi)" x.re x.im
|
pp_cvec [Slap_io.Toplevel] | |
pp_cvec [Slap_io] | |
pp_float_el_default [Slap_io] | fprintf ppf "%G" el
|
pp_fmat [Slap_io.Toplevel] | |
pp_fmat [Slap_io] | |
pp_fvec [Slap_io.Toplevel] | |
pp_fvec [Slap_io] | |
pp_imat [Slap_io.Toplevel] | |
pp_imat [Slap_io] | |
pp_int32_el_default [Slap_io] | fprintf ppf "%ld" x
|
pp_ivec [Slap_io.Toplevel] | |
pp_ivec [Slap_io] | |
pp_mat [Slap_C] |
A pretty-printer for matrices.
|
pp_mat [Slap_Z] |
A pretty-printer for matrices.
|
pp_mat [Slap_S] |
A pretty-printer for matrices.
|
pp_mat [Slap_D] |
A pretty-printer for matrices.
|
pp_mat_gen [Slap_io] |
A generator of pretty printers for matrices.
|
pp_num [Slap_C] |
A pretty-printer for elements in vectors and matrices.
|
pp_num [Slap_Z] |
A pretty-printer for elements in vectors and matrices.
|
pp_num [Slap_S] |
A pretty-printer for elements in vectors and matrices.
|
pp_num [Slap_D] |
A pretty-printer for elements in vectors and matrices.
|
pp_rcvec [Slap_io.Toplevel] | |
pp_rcvec [Slap_io] | |
pp_rfvec [Slap_io.Toplevel] | |
pp_rfvec [Slap_io] | |
pp_rivec [Slap_io.Toplevel] | |
pp_rivec [Slap_io] | |
pp_rvec_gen [Slap_io] |
A generator of pretty printers for row vectors.
|
pp_table [Slap_io] | pp_table
?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col
?pp_left ?pp_right ?pad ?ellipsis ?vertical_context ?horizontal_context
pp_el ppf n_rows n_cols get_el
|
pp_vec [Slap_C] |
A pretty-printer for column vectors.
|
pp_vec [Slap_Z] |
A pretty-printer for column vectors.
|
pp_vec [Slap_S] |
A pretty-printer for column vectors.
|
pp_vec [Slap_D] |
A pretty-printer for column vectors.
|
pp_vec_gen [Slap_io] |
A generator of pretty printers for (column) vectors.
|
ppsv [Slap_C] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
ppsv [Slap_Z] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
ppsv [Slap_S] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
ppsv [Slap_D] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
prec [Slap_C] | |
prec [Slap_Z] | |
prec [Slap_S] | |
prec [Slap_D] | |
pred [Slap_size] | pred n returns
|
pred_dyn [Slap_size] | pred_dyn n
|
prod [Slap_C.Vec] | prod x
|
prod [Slap_Z.Vec] | prod x
|
prod [Slap_S.Vec] | prod x
|
prod [Slap_D.Vec] | prod x
|
ptsv [Slap_C] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n -by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e , each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
ptsv [Slap_Z] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n -by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e , each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
ptsv [Slap_S] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n -by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e , each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
ptsv [Slap_D] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n -by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e , each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
R | |
random [Slap_C.Mat] | random ?rnd_state ?from ?range m n creates a m -by-n matrix randomly
initialized with the uniform distribution between re_from /im_from and
re_from+re_range /im_from+im_range for real and imaginary parts,
respectively.
|
random [Slap_C.Vec] | random ?rnd_state ?from ?range n creates a n -dimensional vector randomly
initialized with the uniform distribution between re_from /im_from and
re_from+re_range /im_from+im_range for real and imaginary parts,
respectively.
|
random [Slap_Z.Mat] | random ?rnd_state ?from ?range m n creates a m -by-n matrix randomly
initialized with the uniform distribution between re_from /im_from and
re_from+re_range /im_from+im_range for real and imaginary parts,
respectively.
|
random [Slap_Z.Vec] | random ?rnd_state ?from ?range n creates a n -dimensional vector randomly
initialized with the uniform distribution between re_from /im_from and
re_from+re_range /im_from+im_range for real and imaginary parts,
respectively.
|
random [Slap_S.Mat] | random ?rnd_state ?from ?range m n creates a m -by-n matrix randomly
initialized with the uniform distribution between from and from + range .
|
random [Slap_S.Vec] | random ?rnd_state ?from ?range n creates a n -dimensional vector randomly
initialized with the uniform distribution between from and from + range .
|
random [Slap_D.Mat] | random ?rnd_state ?from ?range m n creates a m -by-n matrix randomly
initialized with the uniform distribution between from and from + range .
|
random [Slap_D.Vec] | random ?rnd_state ?from ?range n creates a n -dimensional vector randomly
initialized with the uniform distribution between from and from + range .
|
reci [Slap_C.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn) .
|
reci [Slap_Z.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn) .
|
reci [Slap_S.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn) .
|
reci [Slap_D.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn) .
|
replace_all [Slap_C.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f aij .
|
replace_all [Slap_C.Vec] | replace_all x f modifies the vector x in place
-- the i -th element xi of x will be set to f xi .
|
replace_all [Slap_Z.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f aij .
|
replace_all [Slap_Z.Vec] | replace_all x f modifies the vector x in place
-- the i -th element xi of x will be set to f xi .
|
replace_all [Slap_S.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f aij .
|
replace_all [Slap_S.Vec] | replace_all x f modifies the vector x in place
-- the i -th element xi of x will be set to f xi .
|
replace_all [Slap_D.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f aij .
|
replace_all [Slap_D.Vec] | replace_all x f modifies the vector x in place
-- the i -th element xi of x will be set to f xi .
|
replace_all [Slap_mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f aij .
|
replace_all [Slap_vec] | replace_all x f modifies the vector x in place
-- the i -th element xi of x will be set to f xi .
|
replace_alli [Slap_C.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f i j aij .
|
replace_alli [Slap_C.Vec] | replace_alli x f modifies the vector x in place
-- the i -th element xi of x will be set to f i xi .
|
replace_alli [Slap_Z.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f i j aij .
|
replace_alli [Slap_Z.Vec] | replace_alli x f modifies the vector x in place
-- the i -th element xi of x will be set to f i xi .
|
replace_alli [Slap_S.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f i j aij .
|
replace_alli [Slap_S.Vec] | replace_alli x f modifies the vector x in place
-- the i -th element xi of x will be set to f i xi .
|
replace_alli [Slap_D.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f i j aij .
|
replace_alli [Slap_D.Vec] | replace_alli x f modifies the vector x in place
-- the i -th element xi of x will be set to f i xi .
|
replace_alli [Slap_mat] | replace_all a f modifies the matrix a in place
-- the (i,j) -element aij of a will be set to f i j aij .
|
replace_alli [Slap_vec] | replace_alli x f modifies the vector x in place
-- the i -th element xi of x will be set to f i xi .
|
replace_dyn [Slap_C.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)) .
|
replace_dyn [Slap_Z.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)) .
|
replace_dyn [Slap_S.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)) .
|
replace_dyn [Slap_D.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)) .
|
replace_dyn [Slap_mat] | replace_dyn a i j f is set a i j (f (get a i j)) .
|
replace_dyn [Slap_vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)) .
|
rev [Slap_C.Vec] | rev (x1, x2, ..., xn)
|
rev [Slap_Z.Vec] | rev (x1, x2, ..., xn)
|
rev [Slap_S.Vec] | rev (x1, x2, ..., xn)
|
rev [Slap_D.Vec] | rev (x1, x2, ..., xn)
|
rev [Slap_vec] | rev (x1, x2, ..., xn)
|
right [Slap_common] |
Right multiplication
|
riter [Slap_size] | riter f n is f n; ...; f 2; f 1 .
|
riteri [Slap_size] | riteri f n is f (to_int n); ...; f 2; f 1 .
|
row_dyn [Slap_C.Mat] | row_dyn a i
|
row_dyn [Slap_Z.Mat] | row_dyn a i
|
row_dyn [Slap_S.Mat] | row_dyn a i
|
row_dyn [Slap_D.Mat] | row_dyn a i
|
row_dyn [Slap_mat] | row_dyn a i
|
rprec [Slap_C] | |
rprec [Slap_Z] | |
rprec [Slap_S] | |
rprec [Slap_D] | |
S | |
sbev [Slap_S] | sbev ~kd ?z ?up ?work ?w ab computes all eigenvalues and, optionally,
eigenvectors of real symmetric band matrix ab store in band storage
format.
|
sbev [Slap_D] | sbev ~kd ?z ?up ?work ?w ab computes all eigenvalues and, optionally,
eigenvectors of real symmetric band matrix ab store in band storage
format.
|
sbev_min_lwork [Slap_S] | sbev_min_lwork n computes the minimum length of workspace work
for sbev routine.
|
sbev_min_lwork [Slap_D] | sbev_min_lwork n computes the minimum length of workspace work
for sbev routine.
|
sbgv [Slap_S] | sbgv ~ka ~kb ?z ?up ?work ?w ab bb solves a general eigenvalue problem
ab * z = (lambda) * bb * z where ab is a 'n -by-'n symmetric band
matrix with ka subdiagonals, and bb is a 'n -by-'n symmetric
positive-definite band matrix with kb subdiagonals.
|
sbgv [Slap_D] | sbgv ~ka ~kb ?z ?up ?work ?w ab bb solves a general eigenvalue problem
ab * z = (lambda) * bb * z where ab is a 'n -by-'n symmetric band
matrix with ka subdiagonals, and bb is a 'n -by-'n symmetric
positive-definite band matrix with kb subdiagonals.
|
sbmv [Slap_S] | sbmv ~k ?y a ?up ?alpha ?beta x computes y := alpha * a * x + beta * y
where a is a 'n -by-'n symmetric band matrix with k
super-(or sub-)diagonals, and x and y are 'n -dimensional vectors.
|
sbmv [Slap_D] | sbmv ~k ?y a ?up ?alpha ?beta x computes y := alpha * a * x + beta * y
where a is a 'n -by-'n symmetric band matrix with k
super-(or sub-)diagonals, and x and y are 'n -dimensional vectors.
|
scal [Slap_C.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a .
|
scal [Slap_C] | scal c x multiplies all elements in x by scalar value c ,
and destructively assigns the result to x .
|
scal [Slap_Z.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a .
|
scal [Slap_Z] | scal c x multiplies all elements in x by scalar value c ,
and destructively assigns the result to x .
|
scal [Slap_S.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a .
|
scal [Slap_S] | scal c x multiplies all elements in x by scalar value c ,
and destructively assigns the result to x .
|
scal [Slap_D.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a .
|
scal [Slap_D] | scal c x multiplies all elements in x by scalar value c ,
and destructively assigns the result to x .
|
scal_cols [Slap_C.Mat] |
A column-wise
scal function for matrices.
|
scal_cols [Slap_Z.Mat] |
A column-wise
scal function for matrices.
|
scal_cols [Slap_S.Mat] |
A column-wise
scal function for matrices.
|
scal_cols [Slap_D.Mat] |
A column-wise
scal function for matrices.
|
scal_rows [Slap_C.Mat] |
A row-wise
scal function for matrices.
|
scal_rows [Slap_Z.Mat] |
A row-wise
scal function for matrices.
|
scal_rows [Slap_S.Mat] |
A row-wise
scal function for matrices.
|
scal_rows [Slap_D.Mat] |
A row-wise
scal function for matrices.
|
set_dim_defaults [Slap_io.Context] | set_dim_defaults opt_n sets both Slap_io.Context.vertical_default and
Slap_io.Context.horizontal_default to opt_n .
|
set_dyn [Slap_C.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a .
|
set_dyn [Slap_C.Vec] | set_dyn x i a assigns a to the i -th element of the vector x .
|
set_dyn [Slap_Z.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a .
|
set_dyn [Slap_Z.Vec] | set_dyn x i a assigns a to the i -th element of the vector x .
|
set_dyn [Slap_S.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a .
|
set_dyn [Slap_S.Vec] | set_dyn x i a assigns a to the i -th element of the vector x .
|
set_dyn [Slap_D.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a .
|
set_dyn [Slap_D.Vec] | set_dyn x i a assigns a to the i -th element of the vector x .
|
set_dyn [Slap_mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a .
|
set_dyn [Slap_vec] | set_dyn x i a assigns a to the i -th element of the vector x .
|
seven [Slap_size] | |
shared_rev [Slap_C.Vec] | shared_rev (x1, x2, ..., xn)
|
shared_rev [Slap_Z.Vec] | shared_rev (x1, x2, ..., xn)
|
shared_rev [Slap_S.Vec] | shared_rev (x1, x2, ..., xn)
|
shared_rev [Slap_D.Vec] | shared_rev (x1, x2, ..., xn)
|
shared_rev [Slap_vec] | shared_rev (x1, x2, ..., xn)
|
sin [Slap_S.Vec] | sin ?y (x1, x2, ..., xn) returns (sin x1, sin x2, ..., sin xn) .
|
sin [Slap_D.Vec] | sin ?y (x1, x2, ..., xn) returns (sin x1, sin x2, ..., sin xn) .
|
six [Slap_size] | |
sort [Slap_C.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp .
|
sort [Slap_Z.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp .
|
sort [Slap_S.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp .
|
sort [Slap_D.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp .
|
spsv [Slap_C] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
spsv [Slap_Z] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
spsv [Slap_S] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
spsv [Slap_D] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n -by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
sqr [Slap_S.Vec] | sqr ?y x computes the square of elements of the vector x .
|
sqr [Slap_D.Vec] | sqr ?y x computes the square of elements of the vector x .
|
sqr_nrm2 [Slap_C.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x .
|
sqr_nrm2 [Slap_Z.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x .
|
sqr_nrm2 [Slap_S.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x .
|
sqr_nrm2 [Slap_D.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x .
|
sqrt [Slap_S.Vec] | sqr ?y x computes the square root of elements of the vector x .
|
sqrt [Slap_D.Vec] | sqr ?y x computes the square root of elements of the vector x .
|
ssc [Slap_io.Toplevel] |
SLAP Set Context:
ssc n sets sets both
Slap_io.Context.vertical_default and
Slap_io.Context.horizontal_default to Some n .
|
ssqr [Slap_C.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c :
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2 .
|
ssqr [Slap_Z.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c :
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2 .
|
ssqr [Slap_S.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c :
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2 .
|
ssqr [Slap_D.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c :
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2 .
|
ssqr_diff [Slap_C.Vec] | ssqr_diff x y returns the sum of squared differences of the elements of
vectors x and y .
|
ssqr_diff [Slap_Z.Vec] | ssqr_diff x y returns the sum of squared differences of the elements of
vectors x and y .
|
ssqr_diff [Slap_S.Vec] | ssqr_diff x y returns the sum of squared differences of the elements of
vectors x and y .
|
ssqr_diff [Slap_D.Vec] | ssqr_diff x y returns the sum of squared differences of the elements of
vectors x and y .
|
sub [Slap_C.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn) .
|
sub [Slap_Z.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn) .
|
sub [Slap_S.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn) .
|
sub [Slap_D.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn) .
|
sub_dyn [Slap_size] | sub_dyn m n
|
subcntvec_dyn [Slap_C.Vec] | subcntvec_dyn m ?ofsx x
|
subcntvec_dyn [Slap_Z.Vec] | subcntvec_dyn m ?ofsx x
|
subcntvec_dyn [Slap_S.Vec] | subcntvec_dyn m ?ofsx x
|
subcntvec_dyn [Slap_D.Vec] | subcntvec_dyn m ?ofsx x
|
subcntvec_dyn [Slap_vec] | subcntvec_dyn m ?ofsx x
|
subdscvec_dyn [Slap_C.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
subdscvec_dyn [Slap_Z.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
subdscvec_dyn [Slap_S.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
subdscvec_dyn [Slap_D.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
subdscvec_dyn [Slap_vec] | subdscvec_dyn m ?ofsx ?incx x
|
submat_dyn [Slap_C.Mat] | submat_dyn m n ?ar ?ac a
|
submat_dyn [Slap_Z.Mat] | submat_dyn m n ?ar ?ac a
|
submat_dyn [Slap_S.Mat] | submat_dyn m n ?ar ?ac a
|
submat_dyn [Slap_D.Mat] | submat_dyn m n ?ar ?ac a
|
submat_dyn [Slap_mat] | submat_dyn m n ?ar ?ac a
|
subvec_dyn [Slap_C.Vec] |
An alias of
subdscvec_dyn .
|
subvec_dyn [Slap_Z.Vec] |
An alias of
subdscvec_dyn .
|
subvec_dyn [Slap_S.Vec] |
An alias of
subdscvec_dyn .
|
subvec_dyn [Slap_D.Vec] |
An alias of
subdscvec_dyn .
|
subvec_dyn [Slap_vec] |
An alias of
subdscvec_dyn .
|
succ [Slap_size] | succ n
|
sum [Slap_C.Mat] | sum a returns the sum of all elements in a .
|
sum [Slap_C.Vec] | sum x
|
sum [Slap_Z.Mat] | sum a returns the sum of all elements in a .
|
sum [Slap_Z.Vec] | sum x
|
sum [Slap_S.Mat] | sum a returns the sum of all elements in a .
|
sum [Slap_S.Vec] | sum x
|
sum [Slap_D.Mat] | sum a returns the sum of all elements in a .
|
sum [Slap_D.Vec] | sum x
|
svd_all [Slap_common] | |
svd_no [Slap_common] | |
svd_overwrite [Slap_common] | |
svd_top [Slap_common] | |
swap [Slap_C] | swap x y swaps elements in x and y .
|
swap [Slap_Z] | swap x y swaps elements in x and y .
|
swap [Slap_S] | swap x y swaps elements in x and y .
|
swap [Slap_D] | swap x y swaps elements in x and y .
|
syband_dyn [Slap_C.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
syband_dyn [Slap_Z.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
syband_dyn [Slap_S.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
syband_dyn [Slap_D.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
syband_dyn [Slap_mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
syband_dyn [Slap_size] | syband_dyn n kd computs the band storage size of symmetric or Hermitian
band matrices with kd superdiagonals or subdiagonals.
|
sycon [Slap_S] | sycon ?up ?ipiv ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric matrix a .
|
sycon [Slap_D] | sycon ?up ?ipiv ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric matrix a .
|
sycon_min_liwork [Slap_S] | sycon_min_liwork n computes the minimum length of workspace iwork for
sycon routine.
|
sycon_min_liwork [Slap_D] | sycon_min_liwork n computes the minimum length of workspace iwork for
sycon routine.
|
sycon_min_lwork [Slap_S] | sycon_min_lwork n computes the minimum length of workspace work for
sycon routine.
|
sycon_min_lwork [Slap_D] | sycon_min_lwork n computes the minimum length of workspace work for
sycon routine.
|
syev [Slap_S] | syev ?vectors ?up ?work ?w a computes the eigenvalues and the eigenvectors
of 'n -by-'n symmetric matrix a .
|
syev [Slap_D] | syev ?vectors ?up ?work ?w a computes the eigenvalues and the eigenvectors
of 'n -by-'n symmetric matrix a .
|
syev_min_lwork [Slap_S] | syev_min_lwork n computes the minimum length of workspace for
syev routine.
|
syev_min_lwork [Slap_D] | syev_min_lwork n computes the minimum length of workspace for
syev routine.
|
syev_opt_lwork [Slap_S] | syev_opt_lwork ?vectors ?up a computes the optimum length of workspace for
syev routine.
|
syev_opt_lwork [Slap_D] | syev_opt_lwork ?vectors ?up a computes the optimum length of workspace for
syev routine.
|
syevd [Slap_S] | syev ?vectors ?up ?w a computes the eigenvalues and the eigenvectors of
'n -by-'n symmetric matrix a using divide and conquer method.
|
syevd [Slap_D] | syev ?vectors ?up ?w a computes the eigenvalues and the eigenvectors of
'n -by-'n symmetric matrix a using divide and conquer method.
|
syevd_min_liwork [Slap_S] | syevd_min_liwork ?vectors n computes the minimum length of workspace
iwork for syevd routine.
|
syevd_min_liwork [Slap_D] | syevd_min_liwork ?vectors n computes the minimum length of workspace
iwork for syevd routine.
|
syevd_min_lwork [Slap_S] | syevd_min_lwork ?vectors n computes the minimum length of workspace work
for syevd routine.
|
syevd_min_lwork [Slap_D] | syevd_min_lwork ?vectors n computes the minimum length of workspace work
for syevd routine.
|
syevd_opt_liwork [Slap_S] | syevd_opt_liwork ?vectors ?up a computes the optimum length of workspace
iwork for syevd routine.
|
syevd_opt_liwork [Slap_D] | syevd_opt_liwork ?vectors ?up a computes the optimum length of workspace
iwork for syevd routine.
|
syevd_opt_lwork [Slap_S] | syevd_opt_lwork ?vectors ?up a computes the optimum length of workspace
work for syevd routine.
|
syevd_opt_lwork [Slap_D] | syevd_opt_lwork ?vectors ?up a computes the optimum length of workspace
work for syevd routine.
|
syevr_dyn [Slap_S] | syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a
computes selected eigenvalues w and, optionally, eigenvectors z of a
real symmetric matrix a using the Relatively Robust Representations.
|
syevr_dyn [Slap_D] | syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a
computes selected eigenvalues w and, optionally, eigenvectors z of a
real symmetric matrix a using the Relatively Robust Representations.
|
syevr_min_liwork [Slap_S] | sbevr_min_liwork n computes the minimum length of workspace iwork
for syevr routine.
|
syevr_min_liwork [Slap_D] | sbevr_min_liwork n computes the minimum length of workspace iwork
for syevr routine.
|
syevr_min_lwork [Slap_S] | sbevr_min_lwork n computes the minimum length of workspace work
for syevr routine.
|
syevr_min_lwork [Slap_D] | sbevr_min_lwork n computes the minimum length of workspace work
for syevr routine.
|
syevr_opt_liwork [Slap_S] | sbevr_opt_liwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace iwork for sbevr routine.
|
syevr_opt_liwork [Slap_D] | sbevr_opt_liwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace iwork for sbevr routine.
|
syevr_opt_lwork [Slap_S] | sbevr_opt_lwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace work for syevr routine.
|
syevr_opt_lwork [Slap_D] | sbevr_opt_lwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace work for syevr routine.
|
sygv [Slap_S] | sygv ?vectors ?up ?work ?w ?itype a b solves a real generalized symmetric
definite eigenproblem:
|
sygv [Slap_D] | sygv ?vectors ?up ?work ?w ?itype a b solves a real generalized symmetric
definite eigenproblem:
|
sygv_opt_lwork [Slap_S] | sygv_opt_lwork ?vectors ?up ?itype a b computes the optimum length of
workspace work for sbevr routine.
|
sygv_opt_lwork [Slap_D] | sygv_opt_lwork ?vectors ?up ?itype a b computes the optimum length of
workspace work for sbevr routine.
|
symm [Slap_C] | symm ~side ?up ?beta ?c ?alpha a b executes
|
symm [Slap_Z] | symm ~side ?up ?beta ?c ?alpha a b executes
|
symm [Slap_S] | symm ~side ?up ?beta ?c ?alpha a b executes
|
symm [Slap_D] | symm ~side ?up ?beta ?c ?alpha a b executes
|
symm2_trace [Slap_C.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b .
|
symm2_trace [Slap_Z.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b .
|
symm2_trace [Slap_S.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b .
|
symm2_trace [Slap_D.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b .
|
symv [Slap_C] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y .
|
symv [Slap_Z] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y .
|
symv [Slap_S] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y .
|
symv [Slap_D] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y .
|
syr [Slap_S] | syr ?alpha x a computes a := alpha * x * x^T + a with
the symmetric matrix a , the vector x and
the transposed vector x^T of x .
|
syr [Slap_D] | syr ?alpha x a computes a := alpha * x * x^T + a with
the symmetric matrix a , the vector x and
the transposed vector x^T of x .
|
syr2k [Slap_C] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
syr2k [Slap_Z] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
syr2k [Slap_S] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
syr2k [Slap_D] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
syrk [Slap_C] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
syrk [Slap_Z] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
syrk [Slap_S] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
syrk [Slap_D] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
syrk_diag [Slap_C.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
syrk_diag [Slap_Z.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
syrk_diag [Slap_S.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
syrk_diag [Slap_D.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
syrk_trace [Slap_C.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a .
|
syrk_trace [Slap_Z.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a .
|
syrk_trace [Slap_S.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a .
|
syrk_trace [Slap_D.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a .
|
sysv [Slap_C] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n -by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
sysv [Slap_Z] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n -by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
sysv [Slap_S] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n -by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
sysv [Slap_D] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n -by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
sysv_min_lwork [Slap_C] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
sysv_min_lwork [Slap_Z] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
sysv_min_lwork [Slap_S] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
sysv_min_lwork [Slap_D] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
sysv_opt_lwork [Slap_C] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
sysv_opt_lwork [Slap_Z] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
sysv_opt_lwork [Slap_S] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
sysv_opt_lwork [Slap_D] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
sytrf [Slap_C] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
sytrf [Slap_Z] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
sytrf [Slap_S] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
sytrf [Slap_D] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
sytrf_min_lwork [Slap_C] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
sytrf_min_lwork [Slap_Z] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
sytrf_min_lwork [Slap_S] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
sytrf_min_lwork [Slap_D] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
sytrf_opt_lwork [Slap_C] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
sytrf_opt_lwork [Slap_Z] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
sytrf_opt_lwork [Slap_S] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
sytrf_opt_lwork [Slap_D] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
sytri [Slap_C] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
sytri [Slap_Z] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
sytri [Slap_S] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
sytri [Slap_D] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
sytri_min_lwork [Slap_C] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
sytri_min_lwork [Slap_Z] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
sytri_min_lwork [Slap_S] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
sytri_min_lwork [Slap_D] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
sytrs [Slap_C] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
sytrs [Slap_Z] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
sytrs [Slap_S] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
sytrs [Slap_D] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
T | |
tbtrs [Slap_C] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
tbtrs [Slap_Z] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
tbtrs [Slap_S] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
tbtrs [Slap_D] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
ten [Slap_size] | |
three [Slap_size] | |
tl [Slap_C.Vec] | |
tl [Slap_Z.Vec] | |
tl [Slap_S.Vec] | |
tl [Slap_D.Vec] | |
tl [Slap_vec] | |
tl_dyn [Slap_C.Vec] | |
tl_dyn [Slap_Z.Vec] | |
tl_dyn [Slap_S.Vec] | |
tl_dyn [Slap_D.Vec] | |
tl_dyn [Slap_vec] | |
to_array [Slap_C.Mat] | to_array a
|
to_array [Slap_C.Vec] | to_array x
|
to_array [Slap_Z.Mat] | to_array a
|
to_array [Slap_Z.Vec] | to_array x
|
to_array [Slap_S.Mat] | to_array a
|
to_array [Slap_S.Vec] | to_array x
|
to_array [Slap_D.Mat] | to_array a
|
to_array [Slap_D.Vec] | to_array x
|
to_array [Slap_mat] | to_array a
|
to_array [Slap_vec] | to_array x
|
to_bigarray [Slap_C.Mat] | to_bigarray a
|
to_bigarray [Slap_C.Vec] | to_bigarray x
|
to_bigarray [Slap_Z.Mat] | to_bigarray a
|
to_bigarray [Slap_Z.Vec] | to_bigarray x
|
to_bigarray [Slap_S.Mat] | to_bigarray a
|
to_bigarray [Slap_S.Vec] | to_bigarray x
|
to_bigarray [Slap_D.Mat] | to_bigarray a
|
to_bigarray [Slap_D.Vec] | to_bigarray x
|
to_bigarray [Slap_mat] | to_bigarray a
|
to_bigarray [Slap_vec] | to_bigarray x
|
to_int [Slap_size] |
Return the integer correponding to the given size.
|
to_list [Slap_C.Mat] | to_list a
|
to_list [Slap_C.Vec] | to_list x
|
to_list [Slap_Z.Mat] | to_list a
|
to_list [Slap_Z.Vec] | to_list x
|
to_list [Slap_S.Mat] | to_list a
|
to_list [Slap_S.Vec] | to_list x
|
to_list [Slap_D.Mat] | to_list a
|
to_list [Slap_D.Vec] | to_list x
|
to_list [Slap_mat] | to_list a
|
to_list [Slap_vec] | to_list x
|
tpmv [Slap_C] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
tpmv [Slap_Z] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
tpmv [Slap_S] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
tpmv [Slap_D] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
tpsv [Slap_C] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
tpsv [Slap_Z] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
tpsv [Slap_S] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
tpsv [Slap_D] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
trace [Slap_C.Mat] | trace a
|
trace [Slap_Z.Mat] | trace a
|
trace [Slap_S.Mat] | trace a
|
trace [Slap_D.Mat] | trace a
|
trans [Slap_common] |
Transpose of a matrix.
|
transpose_copy [Slap_C.Mat] | transpose_copy ?b a copies the transpose of a into b .
|
transpose_copy [Slap_Z.Mat] | transpose_copy ?b a copies the transpose of a into b .
|
transpose_copy [Slap_S.Mat] | transpose_copy ?b a copies the transpose of a into b .
|
transpose_copy [Slap_D.Mat] | transpose_copy ?b a copies the transpose of a into b .
|
trmm [Slap_C] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
trmm [Slap_Z] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
trmm [Slap_S] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
trmm [Slap_D] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
trmv [Slap_C] | trmv ~trans ?diag ?up a x executes x := OP(a) * x .
|
trmv [Slap_Z] | trmv ~trans ?diag ?up a x executes x := OP(a) * x .
|
trmv [Slap_S] | trmv ~trans ?diag ?up a x executes x := OP(a) * x .
|
trmv [Slap_D] | trmv ~trans ?diag ?up a x executes x := OP(a) * x .
|
trsm [Slap_C] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
trsm [Slap_Z] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
trsm [Slap_S] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
trsm [Slap_D] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
trsv [Slap_C] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b .
|
trsv [Slap_Z] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b .
|
trsv [Slap_S] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b .
|
trsv [Slap_D] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b .
|
trtri [Slap_C] | trtri ?up ?diag a computes the inverse of triangular matrix a .
|
trtri [Slap_Z] | trtri ?up ?diag a computes the inverse of triangular matrix a .
|
trtri [Slap_S] | trtri ?up ?diag a computes the inverse of triangular matrix a .
|
trtri [Slap_D] | trtri ?up ?diag a computes the inverse of triangular matrix a .
|
trtrs [Slap_C] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n , each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
trtrs [Slap_Z] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n , each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
trtrs [Slap_S] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n , each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
trtrs [Slap_D] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n , each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
two [Slap_size] | |
U | |
ungeband [Slap_C.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
ungeband [Slap_Z.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
ungeband [Slap_S.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
ungeband [Slap_D.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
ungeband [Slap_mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
unit [Slap_common] |
A matrix is unit triagular.
|
unluband [Slap_C.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
unluband [Slap_Z.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
unluband [Slap_S.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
unluband [Slap_D.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
unluband [Slap_mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
unpacked [Slap_C.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x .
|
unpacked [Slap_Z.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x .
|
unpacked [Slap_S.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x .
|
unpacked [Slap_D.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x .
|
unpacked [Slap_mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from x stored in packed storage.
|
unpacked [Slap_size] | unpacked n computes the inverse of the packed storage size, i.e.,
unpacked (packed n) = n for all n .
|
unsafe_get [Slap_C.Mat] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_C.Vec] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_Z.Mat] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_Z.Vec] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_S.Mat] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_S.Vec] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_D.Mat] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_D.Vec] |
Like
get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_mat] |
Like
Slap_mat.get_dyn , but size checking is not always performed.
|
unsafe_get [Slap_vec] |
Like
Slap_vec.get_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_C.Mat] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_C.Vec] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_Z.Mat] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_Z.Vec] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_S.Mat] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_S.Vec] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_D.Mat] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_D.Vec] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_mat] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_array [Slap_vec] |
Like
of_array_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_C.Mat] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_C.Vec] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_Z.Mat] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_Z.Vec] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_S.Mat] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_S.Vec] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_D.Mat] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_D.Vec] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_mat] |
Like
of_bigarray_dyn , but size checking is not always performed.
|
unsafe_of_bigarray [Slap_vec] |
Like
unsafe_of_bigarray , but size checking is not always performed.
|
unsafe_of_int [Slap_size] |
Like
of_int_dyn , but dynamic size checking is not performed.
|
unsafe_of_list [Slap_C.Mat] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_C.Vec] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_Z.Mat] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_Z.Vec] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_S.Mat] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_S.Vec] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_D.Mat] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_D.Vec] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_mat] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_of_list [Slap_vec] |
Like
of_list_dyn , but size checking is not always performed.
|
unsafe_set [Slap_C.Mat] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_C.Vec] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_Z.Mat] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_Z.Vec] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_S.Mat] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_S.Vec] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_D.Mat] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_D.Vec] |
Like
set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_mat] |
Like
Slap_mat.set_dyn , but size checking is not always performed.
|
unsafe_set [Slap_vec] |
Like
Slap_vec.set_dyn , but size checking is not always performed.
|
unsyband [Slap_C.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
unsyband [Slap_Z.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
unsyband [Slap_S.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
unsyband [Slap_D.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
unsyband [Slap_mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
upper [Slap_common] |
Using the upper triangular (or trapezoidal) part of a matrix.
|
upper_lower [Slap_common] |
Using both of the upper and lower triangular parts (i.e., all elements) of a
matrix.
|
V | |
value [Slap_C.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec .
|
value [Slap_C.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat .
|
value [Slap_C.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec .
|
value [Slap_C.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec .
|
value [Slap_Z.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec .
|
value [Slap_Z.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat .
|
value [Slap_Z.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec .
|
value [Slap_Z.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec .
|
value [Slap_S.SYEVR_RESULT] | |
value [Slap_S.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec .
|
value [Slap_S.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat .
|
value [Slap_S.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec .
|
value [Slap_S.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec .
|
value [Slap_D.SYEVR_RESULT] | |
value [Slap_D.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec .
|
value [Slap_D.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat .
|
value [Slap_D.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec .
|
value [Slap_D.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec .
|
value [Slap_size.SIZE] |
A dynamically-decided size with type like
exists n. n Size.t .
|
version [Slap_version] |
The version number of SLAP:
"major.minor.micro"
|
vertical_default [Slap_io.Context] |
- If
Some n , the first n rows and the last n rows of a table are
printed.
|
Z | |
zero [Slap_size] | |
zmxy [Slap_C.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn) .
|
zmxy [Slap_Z.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn) .
|
zmxy [Slap_S.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn) .
|
zmxy [Slap_D.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn) .
|
zpxy [Slap_C.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn) .
|
zpxy [Slap_Z.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn) .
|
zpxy [Slap_S.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn) .
|
zpxy [Slap_D.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn) .
|