Index of values


__alloc_work [Slap_vec]
__expose [Slap_mat]
__expose [Slap_vec]
__expose [Slap_size]
__unexpose [Slap_mat]
__unexpose [Slap_vec]
__unexpose [Slap_size]
__unexpose_norm [Slap_common]
__unexpose_side [Slap_common]
__unexpose_svd_job [Slap_common]
__unexpose_uplo [Slap_common]
__unexpose_with_ofs [Slap_vec]

A
add [Slap_C.Vec]
add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 + y1, x2 + y2, ..., xn + yn).
add [Slap_Z.Vec]
add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 + y1, x2 + y2, ..., xn + yn).
add [Slap_S.Vec]
add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 + y1, x2 + y2, ..., xn + yn).
add [Slap_D.Vec]
add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 + y1, x2 + y2, ..., xn + yn).
add [Slap_size]
add m n
add_const [Slap_C.Mat]
add_const c ?b a adds constant value c to all elements in a.
add_const [Slap_C.Vec]
add_const c ?y x adds constant value c to all elements in vector x.
add_const [Slap_Z.Mat]
add_const c ?b a adds constant value c to all elements in a.
add_const [Slap_Z.Vec]
add_const c ?y x adds constant value c to all elements in vector x.
add_const [Slap_S.Mat]
add_const c ?b a adds constant value c to all elements in a.
add_const [Slap_S.Vec]
add_const c ?y x adds constant value c to all elements in vector x.
add_const [Slap_D.Mat]
add_const c ?b a adds constant value c to all elements in a.
add_const [Slap_D.Vec]
add_const c ?y x adds constant value c to all elements in vector x.
amax [Slap_C]
amax x finds the maximum value of all elements in x.
amax [Slap_Z]
amax x finds the maximum value of all elements in x.
amax [Slap_S]
amax x finds the maximum value of all elements in x.
amax [Slap_D]
amax x finds the maximum value of all elements in x.
append [Slap_C.Vec]
Concatenate two vectors.
append [Slap_Z.Vec]
Concatenate two vectors.
append [Slap_S.Vec]
Concatenate two vectors.
append [Slap_D.Vec]
Concatenate two vectors.
append [Slap_vec]
Concatenate two vectors.
as_vec [Slap_C.Mat]
as_vec a
as_vec [Slap_Z.Mat]
as_vec a
as_vec [Slap_S.Mat]
as_vec a
as_vec [Slap_D.Mat]
as_vec a
as_vec [Slap_mat]
as_vec a
asum [Slap_S]
asum x
asum [Slap_D]
asum x
axpy [Slap_C.Mat]
axpy ?alpha x y computes y := alpha * x + y.
axpy [Slap_C]
axpy ?alpha x y executes y := alpha * x + y with scalar value alpha, and vectors x and y.
axpy [Slap_Z.Mat]
axpy ?alpha x y computes y := alpha * x + y.
axpy [Slap_Z]
axpy ?alpha x y executes y := alpha * x + y with scalar value alpha, and vectors x and y.
axpy [Slap_S.Mat]
axpy ?alpha x y computes y := alpha * x + y.
axpy [Slap_S]
axpy ?alpha x y executes y := alpha * x + y with scalar value alpha, and vectors x and y.
axpy [Slap_D.Mat]
axpy ?alpha x y computes y := alpha * x + y.
axpy [Slap_D]
axpy ?alpha x y executes y := alpha * x + y with scalar value alpha, and vectors x and y.

C
char_of_diag [Slap_common]
Return a character of a flag (for BLAS/LAPACK).
char_of_norm [Slap_common]
Return a character of a flag (for BLAS/LAPACK).
char_of_side [Slap_common]
Return a character of a flag (for BLAS/LAPACK).
char_of_svd_job [Slap_common]
Return a character of a flag (for BLAS/LAPACK).
char_of_trans [Slap_common]
Return a character of a flag (for BLAS/LAPACK).
char_of_uplo [Slap_common]
Return a character of a flag (for BLAS/LAPACK).
check_cnt [Slap_mat]
check_cnt [Slap_vec]
check_side_dim [Slap_common]
Auxiliary function (used internally)
cnt [Slap_C.Mat]
Recover polymorphism of the fifth type parameter.
cnt [Slap_C.Vec]
Recover polymorphism of the fourth type parameter.
cnt [Slap_Z.Mat]
Recover polymorphism of the fifth type parameter.
cnt [Slap_Z.Vec]
Recover polymorphism of the fourth type parameter.
cnt [Slap_S.Mat]
Recover polymorphism of the fifth type parameter.
cnt [Slap_S.Vec]
Recover polymorphism of the fourth type parameter.
cnt [Slap_D.Mat]
Recover polymorphism of the fifth type parameter.
cnt [Slap_D.Vec]
Recover polymorphism of the fourth type parameter.
cnt [Slap_mat]
Recover polymorphism of the fifth type parameter.
cnt [Slap_vec]
Recover polymorphism of the fourth type parameter.
col_dyn [Slap_C.Mat]
col_dyn a i
col_dyn [Slap_Z.Mat]
col_dyn a i
col_dyn [Slap_S.Mat]
col_dyn a i
col_dyn [Slap_D.Mat]
col_dyn a i
col_dyn [Slap_mat]
col_dyn a i
conjtr [Slap_common]
Conjugate transpose of a matrix.
cons [Slap_C.Vec]
cons ?y e x adds element e at the beginning of vector x, and copies it into y.
cons [Slap_Z.Vec]
cons ?y e x adds element e at the beginning of vector x, and copies it into y.
cons [Slap_S.Vec]
cons ?y e x adds element e at the beginning of vector x, and copies it into y.
cons [Slap_D.Vec]
cons ?y e x adds element e at the beginning of vector x, and copies it into y.
cons [Slap_vec]
cons ?y e x adds element e at the beginning of vector x, and copies it into y.
copy [Slap_C.Mat]
copy ?uplo ?b a copies the matrix a into the matrix b with the LAPACK function lacpy.
copy [Slap_C.Vec]
copy ?y x copies the vector x to the vector y with the BLAS-1 function [sdcz]copy.
copy [Slap_C]
copy ?y x copies x into y.
copy [Slap_Z.Mat]
copy ?uplo ?b a copies the matrix a into the matrix b with the LAPACK function lacpy.
copy [Slap_Z.Vec]
copy ?y x copies the vector x to the vector y with the BLAS-1 function [sdcz]copy.
copy [Slap_Z]
copy ?y x copies x into y.
copy [Slap_S.Mat]
copy ?uplo ?b a copies the matrix a into the matrix b with the LAPACK function lacpy.
copy [Slap_S.Vec]
copy ?y x copies the vector x to the vector y with the BLAS-1 function [sdcz]copy.
copy [Slap_S]
copy ?y x copies x into y.
copy [Slap_D.Mat]
copy ?uplo ?b a copies the matrix a into the matrix b with the LAPACK function lacpy.
copy [Slap_D.Vec]
copy ?y x copies the vector x to the vector y with the BLAS-1 function [sdcz]copy.
copy [Slap_D]
copy ?y x copies x into y.
copy [Slap_mat]
copy ?b a copies the matrix a into the matrix b.
copy [Slap_vec]
copy ?y x copies the vector x to the vector y.
copy_diag [Slap_C.Mat]
copy_diag a is Vec.copy (Mat.diag a).
copy_diag [Slap_Z.Mat]
copy_diag a is Vec.copy (Mat.diag a).
copy_diag [Slap_S.Mat]
copy_diag a is Vec.copy (Mat.diag a).
copy_diag [Slap_D.Mat]
copy_diag a is Vec.copy (Mat.diag a).
copy_diag_rect [Slap_C.Mat]
copy_diag_rect a is Vec.copy (Mat.diag_rect a).
copy_diag_rect [Slap_Z.Mat]
copy_diag_rect a is Vec.copy (Mat.diag_rect a).
copy_diag_rect [Slap_S.Mat]
copy_diag_rect a is Vec.copy (Mat.diag_rect a).
copy_diag_rect [Slap_D.Mat]
copy_diag_rect a is Vec.copy (Mat.diag_rect a).
copy_row_dyn [Slap_C.Mat]
copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
copy_row_dyn [Slap_Z.Mat]
copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
copy_row_dyn [Slap_S.Mat]
copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
copy_row_dyn [Slap_D.Mat]
copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
cos [Slap_S.Vec]
cos ?y (x1, x2, ..., xn) returns (cos x1, cos x2, ..., cos xn).
cos [Slap_D.Vec]
cos ?y (x1, x2, ..., xn) returns (cos x1, cos x2, ..., cos xn).
create [Slap_C.Mat]
create m n
create [Slap_C.Vec]
create n
create [Slap_Z.Mat]
create m n
create [Slap_Z.Vec]
create n
create [Slap_S.Mat]
create m n
create [Slap_S.Vec]
create n
create [Slap_D.Mat]
create m n
create [Slap_D.Vec]
create n
create [Slap_io.Context]
create [Slap_mat]
create kind m n
create [Slap_vec]
create kind n
create_array2 [Slap_mat]
create_int32_vec [Slap_common]
create_int_vec [Slap_common]

D
detri [Slap_C.Mat]
detri ?up a converts triangular matrix a to a symmetric matrix, i.e., copies the upper or lower triangular part of a into another part.
detri [Slap_Z.Mat]
detri ?up a converts triangular matrix a to a symmetric matrix, i.e., copies the upper or lower triangular part of a into another part.
detri [Slap_S.Mat]
detri ?up a converts triangular matrix a to a symmetric matrix, i.e., copies the upper or lower triangular part of a into another part.
detri [Slap_D.Mat]
detri ?up a converts triangular matrix a to a symmetric matrix, i.e., copies the upper or lower triangular part of a into another part.
diag [Slap_C.Mat]
diag a
diag [Slap_Z.Mat]
diag a
diag [Slap_S.Mat]
diag a
diag [Slap_D.Mat]
diag a
diag [Slap_mat]
diag a
diag_rect [Slap_C.Mat]
diag_rect a
diag_rect [Slap_Z.Mat]
diag_rect a
diag_rect [Slap_S.Mat]
diag_rect a
diag_rect [Slap_D.Mat]
diag_rect a
diag_rect [Slap_mat]
diag_rect a
dim [Slap_C.Mat]
dim a is (dim1 a, dim2 a).
dim [Slap_C.Vec]
dim x
dim [Slap_Z.Mat]
dim a is (dim1 a, dim2 a).
dim [Slap_Z.Vec]
dim x
dim [Slap_S.Mat]
dim a is (dim1 a, dim2 a).
dim [Slap_S.Vec]
dim x
dim [Slap_D.Mat]
dim a is (dim1 a, dim2 a).
dim [Slap_D.Vec]
dim x
dim [Slap_mat]
dim a is (dim1 a, dim2 a).
dim [Slap_vec]
dim x
dim1 [Slap_C.Mat]
dim1 a
dim1 [Slap_Z.Mat]
dim1 a
dim1 [Slap_S.Mat]
dim1 a
dim1 [Slap_D.Mat]
dim1 a
dim1 [Slap_mat]
dim1 a
dim2 [Slap_C.Mat]
dim1 a
dim2 [Slap_Z.Mat]
dim1 a
dim2 [Slap_S.Mat]
dim1 a
dim2 [Slap_D.Mat]
dim1 a
dim2 [Slap_mat]
dim1 a
dim_array_array [Slap_mat]
dim_array_array aa returns Some (n_rows, n_cols) with the number of rows n_rows and the number of columns n_cols of the given array of arrays.
dim_list_list [Slap_mat]
dim_list list ll returns Some (n_rows, n_cols) with the number of rows n_rows and the number of columns n_cols of the given list of lists.
div [Slap_C.Vec]
div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 / y1, x2 / y2, ..., xn / yn).
div [Slap_Z.Vec]
div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 / y1, x2 / y2, ..., xn / yn).
div [Slap_S.Vec]
div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 / y1, x2 / y2, ..., xn / yn).
div [Slap_D.Vec]
div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 / y1, x2 / y2, ..., xn / yn).
div_dyn [Slap_size]
div_dyn m n
dot [Slap_S]
dot x y
dot [Slap_D]
dot x y
dotc [Slap_C]
dotc x y computes x^H y.
dotc [Slap_Z]
dotc x y computes x^H y.
dotu [Slap_C]
dotc x y computes x^T y.
dotu [Slap_Z]
dotc x y computes x^T y.

E
eight [Slap_size]
ellipsis_default [Slap_io.Context]
default = "..."
empty [Slap_C.Mat]
An empty matrix.
empty [Slap_C.Vec]
An empty vector.
empty [Slap_Z.Mat]
An empty matrix.
empty [Slap_Z.Vec]
An empty vector.
empty [Slap_S.Mat]
An empty matrix.
empty [Slap_S.Vec]
An empty vector.
empty [Slap_D.Mat]
An empty matrix.
empty [Slap_D.Vec]
An empty vector.
exists [Slap_C.Vec]
exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
exists [Slap_Z.Vec]
exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
exists [Slap_S.Vec]
exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
exists [Slap_D.Vec]
exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
exists [Slap_vec]
exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
exists2 [Slap_C.Vec]
exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) || (p x2 y2) || ... || (p xn yn).
exists2 [Slap_Z.Vec]
exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) || (p x2 y2) || ... || (p xn yn).
exists2 [Slap_S.Vec]
exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) || (p x2 y2) || ... || (p xn yn).
exists2 [Slap_D.Vec]
exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) || (p x2 y2) || ... || (p xn yn).
exists2 [Slap_vec]
exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) || (p x2 y2) || ... || (p xn yn).
exp [Slap_S.Vec]
exp ?y (x1, x2, ..., xn) returns (exp x1, exp x2, ..., exp xn).
exp [Slap_D.Vec]
exp ?y (x1, x2, ..., xn) returns (exp x1, exp x2, ..., exp xn).

F
failwithf [Slap_misc]
failwith + printf-style format
fill [Slap_C.Mat]
Fill the given matrix with the given value.
fill [Slap_C.Vec]
Fill the given vector with the given value.
fill [Slap_Z.Mat]
Fill the given matrix with the given value.
fill [Slap_Z.Vec]
Fill the given vector with the given value.
fill [Slap_S.Mat]
Fill the given matrix with the given value.
fill [Slap_S.Vec]
Fill the given vector with the given value.
fill [Slap_D.Mat]
Fill the given matrix with the given value.
fill [Slap_D.Vec]
Fill the given vector with the given value.
fill [Slap_mat]
Fill the given matrix with the given value.
fill [Slap_vec]
Fill the given vector with the given value.
five [Slap_size]
fold_bottom [Slap_C.Mat]
fold_bottom f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottom [Slap_Z.Mat]
fold_bottom f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottom [Slap_S.Mat]
fold_bottom f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottom [Slap_D.Mat]
fold_bottom f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottom [Slap_mat]
fold_bottom f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottomi [Slap_C.Mat]
fold_bottomi f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottomi [Slap_Z.Mat]
fold_bottomi f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottomi [Slap_S.Mat]
fold_bottomi f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottomi [Slap_D.Mat]
fold_bottomi f a init folds row vectors of matrix a by f in the order bottom to top.
fold_bottomi [Slap_mat]
fold_bottomi f a init folds row vectors of matrix a by f in the order bottom to top.
fold_left [Slap_C.Mat]
fold_left f init a folds column vectors of matrix a by f in the order left to right.
fold_left [Slap_C.Vec]
fold_left f init (x1, x2, ..., xn) is f (... (f (f init x1) x2) ...) xn.
fold_left [Slap_Z.Mat]
fold_left f init a folds column vectors of matrix a by f in the order left to right.
fold_left [Slap_Z.Vec]
fold_left f init (x1, x2, ..., xn) is f (... (f (f init x1) x2) ...) xn.
fold_left [Slap_S.Mat]
fold_left f init a folds column vectors of matrix a by f in the order left to right.
fold_left [Slap_S.Vec]
fold_left f init (x1, x2, ..., xn) is f (... (f (f init x1) x2) ...) xn.
fold_left [Slap_D.Mat]
fold_left f init a folds column vectors of matrix a by f in the order left to right.
fold_left [Slap_D.Vec]
fold_left f init (x1, x2, ..., xn) is f (... (f (f init x1) x2) ...) xn.
fold_left [Slap_mat]
fold_left f init a folds column vectors of matrix a by f in the order left to right.
fold_left [Slap_vec]
fold_left f init (x1, x2, ..., xn) is f (... (f (f init x1) x2) ...) xn.
fold_left [Slap_size]
fold_left f init n is f (... (f (f init 1) 2) ...) n.
fold_left2 [Slap_C.Vec]
fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f (... (f (f init x1 y1) x2 y2) ...) xn yn.
fold_left2 [Slap_Z.Vec]
fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f (... (f (f init x1 y1) x2 y2) ...) xn yn.
fold_left2 [Slap_S.Vec]
fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f (... (f (f init x1 y1) x2 y2) ...) xn yn.
fold_left2 [Slap_D.Vec]
fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f (... (f (f init x1 y1) x2 y2) ...) xn yn.
fold_left2 [Slap_vec]
fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f (... (f (f init x1 y1) x2 y2) ...) xn yn.
fold_left3 [Slap_C.Vec]
fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
fold_left3 [Slap_Z.Vec]
fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
fold_left3 [Slap_S.Vec]
fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
fold_left3 [Slap_D.Vec]
fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
fold_left3 [Slap_vec]
fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
fold_lefti [Slap_C.Mat]
fold_lefti f init a folds column vectors of matrix a by f in the order left to right.
fold_lefti [Slap_C.Vec]
fold_lefti f init (x1, x2, ..., xn) is f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
fold_lefti [Slap_Z.Mat]
fold_lefti f init a folds column vectors of matrix a by f in the order left to right.
fold_lefti [Slap_Z.Vec]
fold_lefti f init (x1, x2, ..., xn) is f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
fold_lefti [Slap_S.Mat]
fold_lefti f init a folds column vectors of matrix a by f in the order left to right.
fold_lefti [Slap_S.Vec]
fold_lefti f init (x1, x2, ..., xn) is f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
fold_lefti [Slap_D.Mat]
fold_lefti f init a folds column vectors of matrix a by f in the order left to right.
fold_lefti [Slap_D.Vec]
fold_lefti f init (x1, x2, ..., xn) is f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
fold_lefti [Slap_mat]
fold_lefti f init a folds column vectors of matrix a by f in the order left to right.
fold_lefti [Slap_vec]
fold_lefti f init (x1, x2, ..., xn) is f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
fold_lefti [Slap_size]
fold_lefti f init n is f (... (f (f init 1) 2) ...) (to_int n).
fold_lefti2 [Slap_C.Vec]
fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors' dimension n.
fold_lefti2 [Slap_Z.Vec]
fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors' dimension n.
fold_lefti2 [Slap_S.Vec]
fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors' dimension n.
fold_lefti2 [Slap_D.Vec]
fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors' dimension n.
fold_lefti2 [Slap_vec]
fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors' dimension n.
fold_lefti3 [Slap_C.Vec]
fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the vectors' dimension n.
fold_lefti3 [Slap_Z.Vec]
fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the vectors' dimension n.
fold_lefti3 [Slap_S.Vec]
fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the vectors' dimension n.
fold_lefti3 [Slap_D.Vec]
fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the vectors' dimension n.
fold_lefti3 [Slap_vec]
fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the vectors' dimension n.
fold_right [Slap_C.Mat]
fold_right f a init folds column vectors of matrix a by f in the order right to left.
fold_right [Slap_C.Vec]
fold_right f (x1, x2, ..., xn) init is f x1 (f x2 (... (f xn init) ...)).
fold_right [Slap_Z.Mat]
fold_right f a init folds column vectors of matrix a by f in the order right to left.
fold_right [Slap_Z.Vec]
fold_right f (x1, x2, ..., xn) init is f x1 (f x2 (... (f xn init) ...)).
fold_right [Slap_S.Mat]
fold_right f a init folds column vectors of matrix a by f in the order right to left.
fold_right [Slap_S.Vec]
fold_right f (x1, x2, ..., xn) init is f x1 (f x2 (... (f xn init) ...)).
fold_right [Slap_D.Mat]
fold_right f a init folds column vectors of matrix a by f in the order right to left.
fold_right [Slap_D.Vec]
fold_right f (x1, x2, ..., xn) init is f x1 (f x2 (... (f xn init) ...)).
fold_right [Slap_mat]
fold_right f a init folds column vectors of matrix a by f in the order right to left.
fold_right [Slap_vec]
fold_right f (x1, x2, ..., xn) init is f x1 (f x2 (... (f xn init) ...)).
fold_right [Slap_size]
fold_right f n init is f 1 (f 2 (... (f n init) ...)).
fold_right2 [Slap_C.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
fold_right2 [Slap_Z.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
fold_right2 [Slap_S.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
fold_right2 [Slap_D.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
fold_right2 [Slap_vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
fold_right3 [Slap_C.Vec]
fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
fold_right3 [Slap_Z.Vec]
fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
fold_right3 [Slap_S.Vec]
fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
fold_right3 [Slap_D.Vec]
fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
fold_right3 [Slap_vec]
fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
fold_righti [Slap_C.Mat]
fold_righti f a init folds column vectors of matrix a by f in the order right to left.
fold_righti [Slap_C.Vec]
fold_righti f (x1, x2, ..., xn) init is f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
fold_righti [Slap_Z.Mat]
fold_righti f a init folds column vectors of matrix a by f in the order right to left.
fold_righti [Slap_Z.Vec]
fold_righti f (x1, x2, ..., xn) init is f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
fold_righti [Slap_S.Mat]
fold_righti f a init folds column vectors of matrix a by f in the order right to left.
fold_righti [Slap_S.Vec]
fold_righti f (x1, x2, ..., xn) init is f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
fold_righti [Slap_D.Mat]
fold_righti f a init folds column vectors of matrix a by f in the order right to left.
fold_righti [Slap_D.Vec]
fold_righti f (x1, x2, ..., xn) init is f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
fold_righti [Slap_mat]
fold_righti f a init folds column vectors of matrix a by f in the order right to left.
fold_righti [Slap_vec]
fold_righti f (x1, x2, ..., xn) init is f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
fold_righti [Slap_size]
fold_righti f n init is f 1 (f 2 (... (f (to_int n) init) ...)).
fold_righti2 [Slap_C.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors' dimension n.
fold_righti2 [Slap_Z.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors' dimension n.
fold_righti2 [Slap_S.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors' dimension n.
fold_righti2 [Slap_D.Vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors' dimension n.
fold_righti2 [Slap_vec]
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors' dimension n.
fold_righti3 [Slap_C.Vec]
fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...)) with the vectors' dimension n.
fold_righti3 [Slap_Z.Vec]
fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...)) with the vectors' dimension n.
fold_righti3 [Slap_S.Vec]
fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...)) with the vectors' dimension n.
fold_righti3 [Slap_D.Vec]
fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...)) with the vectors' dimension n.
fold_righti3 [Slap_vec]
fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...)) with the vectors' dimension n.
fold_top [Slap_C.Mat]
fold_top f init a folds row vectors of matrix a by f in the order top to bottom.
fold_top [Slap_Z.Mat]
fold_top f init a folds row vectors of matrix a by f in the order top to bottom.
fold_top [Slap_S.Mat]
fold_top f init a folds row vectors of matrix a by f in the order top to bottom.
fold_top [Slap_D.Mat]
fold_top f init a folds row vectors of matrix a by f in the order top to bottom.
fold_top [Slap_mat]
fold_top f init a folds row vectors of matrix a by f in the order top to bottom.
fold_topi [Slap_C.Mat]
fold_topi f init a folds row vectors of matrix a by f in the order top to bottom.
fold_topi [Slap_Z.Mat]
fold_topi f init a folds row vectors of matrix a by f in the order top to bottom.
fold_topi [Slap_S.Mat]
fold_topi f init a folds row vectors of matrix a by f in the order top to bottom.
fold_topi [Slap_D.Mat]
fold_topi f init a folds row vectors of matrix a by f in the order top to bottom.
fold_topi [Slap_mat]
fold_topi f init a folds row vectors of matrix a by f in the order top to bottom.
for_all [Slap_C.Vec]
for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
for_all [Slap_Z.Vec]
for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
for_all [Slap_S.Vec]
for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
for_all [Slap_D.Vec]
for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
for_all [Slap_vec]
for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
for_all2 [Slap_C.Vec]
for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) && (p x2 y2) && ... && (p xn yn).
for_all2 [Slap_Z.Vec]
for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) && (p x2 y2) && ... && (p xn yn).
for_all2 [Slap_S.Vec]
for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) && (p x2 y2) && ... && (p xn yn).
for_all2 [Slap_D.Vec]
for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) && (p x2 y2) && ... && (p xn yn).
for_all2 [Slap_vec]
for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is (p x1 y1) && (p x2 y2) && ... && (p xn yn).
four [Slap_size]

G
gbmv [Slap_C]
gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes y := alpha * OP(a) * x + beta * y where a is a band matrix stored in band storage.
gbmv [Slap_Z]
gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes y := alpha * OP(a) * x + beta * y where a is a band matrix stored in band storage.
gbmv [Slap_S]
gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes y := alpha * OP(a) * x + beta * y where a is a band matrix stored in band storage.
gbmv [Slap_D]
gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes y := alpha * OP(a) * x + beta * y where a is a band matrix stored in band storage.
gbsv [Slap_C]
gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B where A is a 'n-by-'n band matrix, each column of matrix B is the r.h.s.
gbsv [Slap_Z]
gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B where A is a 'n-by-'n band matrix, each column of matrix B is the r.h.s.
gbsv [Slap_S]
gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B where A is a 'n-by-'n band matrix, each column of matrix B is the r.h.s.
gbsv [Slap_D]
gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B where A is a 'n-by-'n band matrix, each column of matrix B is the r.h.s.
geband_dyn [Slap_C.Mat]
geband_dyn kl ku ?b a converts matrix a into a matrix stored in band storage.
geband_dyn [Slap_Z.Mat]
geband_dyn kl ku ?b a converts matrix a into a matrix stored in band storage.
geband_dyn [Slap_S.Mat]
geband_dyn kl ku ?b a converts matrix a into a matrix stored in band storage.
geband_dyn [Slap_D.Mat]
geband_dyn kl ku ?b a converts matrix a into a matrix stored in band storage.
geband_dyn [Slap_mat]
geband_dyn kl ku ?b a converts matrix a into a matrix stored in band storage.
geband_dyn [Slap_size]
geband_dyn m n kl ku computs the band storage size of m-by-n band matrices with kl subdiagonals and ku superdiagonals.
gecon [Slap_S]
gecon ?norm ?anorm ?work ?iwork a estimates the reciprocal of the condition number of general matrix a.
gecon [Slap_D]
gecon ?norm ?anorm ?work ?iwork a estimates the reciprocal of the condition number of general matrix a.
gecon_min_liwork [Slap_S]
gecon_min_liwork n computes the minimum length of workspace iwork for gecon routine.
gecon_min_liwork [Slap_D]
gecon_min_liwork n computes the minimum length of workspace iwork for gecon routine.
gecon_min_lwork [Slap_S]
gecon_min_lwork n computes the minimum length of workspace work for gecon routine.
gecon_min_lwork [Slap_D]
gecon_min_lwork n computes the minimum length of workspace work for gecon routine.
geev [Slap_S]
geev ?work ?vl ?vr ?wr ?wi a computes the eigenvalues and the left and right eigenvectors of 'n-by-'n nonsymmetric matrix a:
geev [Slap_D]
geev ?work ?vl ?vr ?wr ?wi a computes the eigenvalues and the left and right eigenvectors of 'n-by-'n nonsymmetric matrix a:
geev_min_lwork [Slap_S]
geev_min_lwork ?vectors n computes the minimum length of workspace for geev routine.
geev_min_lwork [Slap_D]
geev_min_lwork ?vectors n computes the minimum length of workspace for geev routine.
geev_opt_lwork [Slap_S]
geev_opt_lwork ?vl ?vr ?wr ?vi a computes the optimum length of workspace for geev routine.
geev_opt_lwork [Slap_D]
geev_opt_lwork ?vl ?vr ?wr ?vi a computes the optimum length of workspace for geev routine.
gels [Slap_C]
gels ?work ~trans a b solves an overdetermined or underdetermined system of linear equations using QR or LU factorization.
gels [Slap_Z]
gels ?work ~trans a b solves an overdetermined or underdetermined system of linear equations using QR or LU factorization.
gels [Slap_S]
gels ?work ~trans a b solves an overdetermined or underdetermined system of linear equations using QR or LU factorization.
gels [Slap_D]
gels ?work ~trans a b solves an overdetermined or underdetermined system of linear equations using QR or LU factorization.
gels_min_lwork [Slap_C]
gels_min_lwork ~n computes the minimum length of workspace for gels routine.
gels_min_lwork [Slap_Z]
gels_min_lwork ~n computes the minimum length of workspace for gels routine.
gels_min_lwork [Slap_S]
gels_min_lwork ~n computes the minimum length of workspace for gels routine.
gels_min_lwork [Slap_D]
gels_min_lwork ~n computes the minimum length of workspace for gels routine.
gels_opt_lwork [Slap_C]
gels_opt_lwork ~trans a b computes the optimum length of workspace for gels routine.
gels_opt_lwork [Slap_Z]
gels_opt_lwork ~trans a b computes the optimum length of workspace for gels routine.
gels_opt_lwork [Slap_S]
gels_opt_lwork ~trans a b computes the optimum length of workspace for gels routine.
gels_opt_lwork [Slap_D]
gels_opt_lwork ~trans a b computes the optimum length of workspace for gels routine.
gelsd [Slap_S]
gelsd a ?rcond ?jpvt ?work b computes the minimum-norm solution to a linear least square problem (minimize ||b - a * x||) using the singular value decomposition (SVD) of a and a divide and conquer method.
gelsd [Slap_D]
gelsd a ?rcond ?jpvt ?work b computes the minimum-norm solution to a linear least square problem (minimize ||b - a * x||) using the singular value decomposition (SVD) of a and a divide and conquer method.
gelsd_min_iwork [Slap_S]
gelsd_min_iwork ~m ~n ~nrhs computes the minimum length of workspace iwork for gelsd routine.
gelsd_min_iwork [Slap_D]
gelsd_min_iwork ~m ~n ~nrhs computes the minimum length of workspace iwork for gelsd routine.
gelsd_min_lwork [Slap_S]
gelsd_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for gelsd routine.
gelsd_min_lwork [Slap_D]
gelsd_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for gelsd routine.
gelsd_opt_lwork [Slap_S]
gelsd_opt_lwork a b computes the optimum length of workspace for gelsd routine.
gelsd_opt_lwork [Slap_D]
gelsd_opt_lwork a b computes the optimum length of workspace for gelsd routine.
gelss [Slap_S]
gelss a ?rcond ?work b computes the minimum-norm solution to a linear least square problem (minimize ||b - a * x||) using the singular value decomposition (SVD) of a.
gelss [Slap_D]
gelss a ?rcond ?work b computes the minimum-norm solution to a linear least square problem (minimize ||b - a * x||) using the singular value decomposition (SVD) of a.
gelss_min_lwork [Slap_S]
gelss_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for gelss routine.
gelss_min_lwork [Slap_D]
gelss_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for gelss routine.
gelss_opt_lwork [Slap_S]
gelss_min_lwork a b computes the optimum length of workspace for gelss routine.
gelss_opt_lwork [Slap_D]
gelss_min_lwork a b computes the optimum length of workspace for gelss routine.
gelsy [Slap_S]
gelsy a ?rcond ?jpvt ?work b computes the minimum-norm solution to a linear least square problem (minimize ||b - a * x||) using a complete orthogonal factorization of a.
gelsy [Slap_D]
gelsy a ?rcond ?jpvt ?work b computes the minimum-norm solution to a linear least square problem (minimize ||b - a * x||) using a complete orthogonal factorization of a.
gelsy_min_lwork [Slap_S]
gelsy_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for gelsy routine.
gelsy_min_lwork [Slap_D]
gelsy_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for gelsy routine.
gelsy_opt_lwork [Slap_S]
gelsy_opt_lwork a b computes the optimum length of workspace for gelsy routine.
gelsy_opt_lwork [Slap_D]
gelsy_opt_lwork a b computes the optimum length of workspace for gelsy routine.
gemm [Slap_C]
gemm ?beta ?c ~transa ?alpha a ~transb b executes c := alpha * OP(a) * OP(b) + beta * c.
gemm [Slap_Z]
gemm ?beta ?c ~transa ?alpha a ~transb b executes c := alpha * OP(a) * OP(b) + beta * c.
gemm [Slap_S]
gemm ?beta ?c ~transa ?alpha a ~transb b executes c := alpha * OP(a) * OP(b) + beta * c.
gemm [Slap_D]
gemm ?beta ?c ~transa ?alpha a ~transb b executes c := alpha * OP(a) * OP(b) + beta * c.
gemm_diag [Slap_C.Mat]
gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes y := DIAG(alpha * OP(a) * OP(b)) + beta * y where DIAG(x) is the vector of the diagonal elements in matrix x, and OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H (the conjugate transpose of x).
gemm_diag [Slap_Z.Mat]
gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes y := DIAG(alpha * OP(a) * OP(b)) + beta * y where DIAG(x) is the vector of the diagonal elements in matrix x, and OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H (the conjugate transpose of x).
gemm_diag [Slap_S.Mat]
gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes y := DIAG(alpha * OP(a) * OP(b)) + beta * y where DIAG(x) is the vector of the diagonal elements in matrix x, and OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H (the conjugate transpose of x).
gemm_diag [Slap_D.Mat]
gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes y := DIAG(alpha * OP(a) * OP(b)) + beta * y where DIAG(x) is the vector of the diagonal elements in matrix x, and OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H (the conjugate transpose of x).
gemm_trace [Slap_C.Mat]
gemm_trace ~transa a ~transb b
gemm_trace [Slap_Z.Mat]
gemm_trace ~transa a ~transb b
gemm_trace [Slap_S.Mat]
gemm_trace ~transa a ~transb b
gemm_trace [Slap_D.Mat]
gemm_trace ~transa a ~transb b
gemv [Slap_C]
gemv ?beta ?y ~trans ?alpha a x executes y := alpha * OP(a) * x + beta * y.
gemv [Slap_Z]
gemv ?beta ?y ~trans ?alpha a x executes y := alpha * OP(a) * x + beta * y.
gemv [Slap_S]
gemv ?beta ?y ~trans ?alpha a x executes y := alpha * OP(a) * x + beta * y.
gemv [Slap_D]
gemv ?beta ?y ~trans ?alpha a x executes y := alpha * OP(a) * x + beta * y.
geqrf [Slap_C]
geqrf ?work ?tau a computes the QR factorization of general matrix a: a = Q * R where Q is an orthogonal (unitary) matrix and R is an upper triangular matrix.
geqrf [Slap_Z]
geqrf ?work ?tau a computes the QR factorization of general matrix a: a = Q * R where Q is an orthogonal (unitary) matrix and R is an upper triangular matrix.
geqrf [Slap_S]
geqrf ?work ?tau a computes the QR factorization of general matrix a: a = Q * R where Q is an orthogonal (unitary) matrix and R is an upper triangular matrix.
geqrf [Slap_D]
geqrf ?work ?tau a computes the QR factorization of general matrix a: a = Q * R where Q is an orthogonal (unitary) matrix and R is an upper triangular matrix.
geqrf_min_lwork [Slap_C]
geqrf_min_lwork ~n computes the minimum length of workspace for geqrf routine.
geqrf_min_lwork [Slap_Z]
geqrf_min_lwork ~n computes the minimum length of workspace for geqrf routine.
geqrf_min_lwork [Slap_S]
geqrf_min_lwork ~n computes the minimum length of workspace for geqrf routine.
geqrf_min_lwork [Slap_D]
geqrf_min_lwork ~n computes the minimum length of workspace for geqrf routine.
geqrf_opt_lwork [Slap_C]
geqrf_opt_lwork a computes the optimum length of workspace for geqrf routine.
geqrf_opt_lwork [Slap_Z]
geqrf_opt_lwork a computes the optimum length of workspace for geqrf routine.
geqrf_opt_lwork [Slap_S]
geqrf_opt_lwork a computes the optimum length of workspace for geqrf routine.
geqrf_opt_lwork [Slap_D]
geqrf_opt_lwork a computes the optimum length of workspace for geqrf routine.
ger [Slap_S]
ger ?alpha x y a computes a := alpha * x * y^T + a with the general matrix a, the vector x and the transposed vector y^T of y.
ger [Slap_D]
ger ?alpha x y a computes a := alpha * x * y^T + a with the general matrix a, the vector x and the transposed vector y^T of y.
gesdd [Slap_S]
gesdd ~jobz ?s ?u ?vt ?work ?iwork a computes the singular value decomposition (SVD) of general rectangular matrix a using a divide and conquer method: a = U * D * V^T where
gesdd [Slap_D]
gesdd ~jobz ?s ?u ?vt ?work ?iwork a computes the singular value decomposition (SVD) of general rectangular matrix a using a divide and conquer method: a = U * D * V^T where
gesdd_liwork [Slap_S]
gesdd_liwork ~m ~n computes the length of workspace iwork for gesdd routine.
gesdd_liwork [Slap_D]
gesdd_liwork ~m ~n computes the length of workspace iwork for gesdd routine.
gesdd_min_lwork [Slap_S]
gesdd_min_lwork ~m ~n computes the minimum length of workspace work for gesdd routine.
gesdd_min_lwork [Slap_D]
gesdd_min_lwork ~m ~n computes the minimum length of workspace work for gesdd routine.
gesdd_opt_lwork [Slap_S]
gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a computes the optimum length of workspace work for gesdd routine.
gesdd_opt_lwork [Slap_D]
gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a computes the optimum length of workspace work for gesdd routine.
gesv [Slap_C]
gesv ?ipiv a b solves a system of linear equations a * x = b where a is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
gesv [Slap_Z]
gesv ?ipiv a b solves a system of linear equations a * x = b where a is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
gesv [Slap_S]
gesv ?ipiv a b solves a system of linear equations a * x = b where a is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
gesv [Slap_D]
gesv ?ipiv a b solves a system of linear equations a * x = b where a is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
gesvd [Slap_S]
gesvd ?jobu ?jobvt ?s ?u ?vt ?work a computes the singular value decomposition (SVD) of 'm-by-'n general rectangular matrix a: a = U * D * V^T where
gesvd [Slap_D]
gesvd ?jobu ?jobvt ?s ?u ?vt ?work a computes the singular value decomposition (SVD) of 'm-by-'n general rectangular matrix a: a = U * D * V^T where
gesvd_min_lwork [Slap_S]
gesvd_min_lwork ~m ~n computes the minimum length of workspace for gesvd routine.
gesvd_min_lwork [Slap_D]
gesvd_min_lwork ~m ~n computes the minimum length of workspace for gesvd routine.
gesvd_opt_lwork [Slap_S]
gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt computes the optimum length of workspace for gesvd routine.
gesvd_opt_lwork [Slap_D]
gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt computes the optimum length of workspace for gesvd routine.
get_dyn [Slap_C.Mat]
get_dyn a i j
get_dyn [Slap_C.Vec]
get_dyn x i
get_dyn [Slap_Z.Mat]
get_dyn a i j
get_dyn [Slap_Z.Vec]
get_dyn x i
get_dyn [Slap_S.Mat]
get_dyn a i j
get_dyn [Slap_S.Vec]
get_dyn x i
get_dyn [Slap_D.Mat]
get_dyn a i j
get_dyn [Slap_D.Vec]
get_dyn x i
get_dyn [Slap_mat]
get_dyn a i j
get_dyn [Slap_vec]
get_dyn x i
get_transposed_dim [Slap_common]
get_transposed_dim trans m n returns (m * n) if trans is Slap_common.normal;, (n * m) if trans is Slap_common.trans or Slap_common.conjtr.
getrf [Slap_C]
getrf ?ipiv a computes LU factorization of matrix a using partial pivoting with row interchanges: a = P * L * U where P is a permutation matrix, and L and U are lower and upper triangular matrices, respectively.
getrf [Slap_Z]
getrf ?ipiv a computes LU factorization of matrix a using partial pivoting with row interchanges: a = P * L * U where P is a permutation matrix, and L and U are lower and upper triangular matrices, respectively.
getrf [Slap_S]
getrf ?ipiv a computes LU factorization of matrix a using partial pivoting with row interchanges: a = P * L * U where P is a permutation matrix, and L and U are lower and upper triangular matrices, respectively.
getrf [Slap_D]
getrf ?ipiv a computes LU factorization of matrix a using partial pivoting with row interchanges: a = P * L * U where P is a permutation matrix, and L and U are lower and upper triangular matrices, respectively.
getri [Slap_C]
getri ?ipiv ?work a computes the inverse of general matrix a by LU-factorization.
getri [Slap_Z]
getri ?ipiv ?work a computes the inverse of general matrix a by LU-factorization.
getri [Slap_S]
getri ?ipiv ?work a computes the inverse of general matrix a by LU-factorization.
getri [Slap_D]
getri ?ipiv ?work a computes the inverse of general matrix a by LU-factorization.
getri_min_lwork [Slap_C]
getri_min_lwork n computes the minimum length of workspace for getri routine.
getri_min_lwork [Slap_Z]
getri_min_lwork n computes the minimum length of workspace for getri routine.
getri_min_lwork [Slap_S]
getri_min_lwork n computes the minimum length of workspace for getri routine.
getri_min_lwork [Slap_D]
getri_min_lwork n computes the minimum length of workspace for getri routine.
getri_opt_lwork [Slap_C]
getri_opt_lwork a computes the optimal length of workspace for getri routine.
getri_opt_lwork [Slap_Z]
getri_opt_lwork a computes the optimal length of workspace for getri routine.
getri_opt_lwork [Slap_S]
getri_opt_lwork a computes the optimal length of workspace for getri routine.
getri_opt_lwork [Slap_D]
getri_opt_lwork a computes the optimal length of workspace for getri routine.
getrs [Slap_C]
getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b where a a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
getrs [Slap_Z]
getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b where a a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
getrs [Slap_S]
getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b where a a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
getrs [Slap_D]
getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b where a a 'n-by-'n general matrix, each column of matrix b is the r.h.s.

H
hd [Slap_C.Vec]
hd [Slap_Z.Vec]
hd [Slap_S.Vec]
hd [Slap_D.Vec]
hd [Slap_vec]
hd_dyn [Slap_C.Vec]
hd_dyn [Slap_Z.Vec]
hd_dyn [Slap_S.Vec]
hd_dyn [Slap_D.Vec]
hd_dyn [Slap_vec]
horizontal_default [Slap_io.Context]
- If Some n, the first n columns and the last n columns of a table are printed.

I
iamax [Slap_C]
iamax x returns the index of the maximum value of all elements in x.
iamax [Slap_Z]
iamax x returns the index of the maximum value of all elements in x.
iamax [Slap_S]
iamax x returns the index of the maximum value of all elements in x.
iamax [Slap_D]
iamax x returns the index of the maximum value of all elements in x.
identity [Slap_misc]
The identity function.
identity [Slap_C.Mat]
identity n
identity [Slap_Z.Mat]
identity n
identity [Slap_S.Mat]
identity n
identity [Slap_D.Mat]
identity n
init [Slap_C.Mat]
An alias of init_cols.
init [Slap_C.Vec]
init n f
init [Slap_Z.Mat]
An alias of init_cols.
init [Slap_Z.Vec]
init n f
init [Slap_S.Mat]
An alias of init_cols.
init [Slap_S.Vec]
init n f
init [Slap_D.Mat]
An alias of init_cols.
init [Slap_D.Vec]
init n f
init [Slap_mat]
An alias of init_cols.
init [Slap_vec]
init kind n f
init_cols [Slap_C.Mat]
init_cols m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_cols [Slap_Z.Mat]
init_cols m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_cols [Slap_S.Mat]
init_cols m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_cols [Slap_D.Mat]
init_cols m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_cols [Slap_mat]
init_cols kind m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_rows [Slap_C.Mat]
init_rows m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_rows [Slap_Z.Mat]
init_rows m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_rows [Slap_S.Mat]
init_rows m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_rows [Slap_D.Mat]
init_rows m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
init_rows [Slap_mat]
init_rows kind m n f returns a fresh m-by-n matrix whose the (i,j) element is initialized by the result of calling f i j.
inits [Slap_C.Vec]
inits [Slap_Z.Vec]
inits [Slap_S.Vec]
inits [Slap_D.Vec]
inits [Slap_vec]
inits_dyn [Slap_C.Vec]
inits_dyn [Slap_Z.Vec]
inits_dyn [Slap_S.Vec]
inits_dyn [Slap_D.Vec]
inits_dyn [Slap_vec]
invalid_argf [Slap_misc]
invalid_arg + printf-style format
iszero [Slap_size]
iszero n returns true if size n is zero.
iter [Slap_C.Vec]
iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
iter [Slap_Z.Vec]
iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
iter [Slap_S.Vec]
iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
iter [Slap_D.Vec]
iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
iter [Slap_vec]
iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
iter [Slap_size]
iter f n is f 1; f 2; ...; f n.
iter2 [Slap_C.Vec]
iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f x1 y1; f x2 y2; ...; f xn yn.
iter2 [Slap_Z.Vec]
iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f x1 y1; f x2 y2; ...; f xn yn.
iter2 [Slap_S.Vec]
iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f x1 y1; f x2 y2; ...; f xn yn.
iter2 [Slap_D.Vec]
iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f x1 y1; f x2 y2; ...; f xn yn.
iter2 [Slap_vec]
iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f x1 y1; f x2 y2; ...; f xn yn.
iter3 [Slap_C.Vec]
iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
iter3 [Slap_Z.Vec]
iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
iter3 [Slap_S.Vec]
iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
iter3 [Slap_D.Vec]
iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
iter3 [Slap_vec]
iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
iteri [Slap_C.Vec]
iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
iteri [Slap_Z.Vec]
iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
iteri [Slap_S.Vec]
iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
iteri [Slap_D.Vec]
iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
iteri [Slap_vec]
iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
iteri [Slap_size]
iteri f n is f 1; f 2; ...; f (to_int n).
iteri2 [Slap_C.Vec]
iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
iteri2 [Slap_Z.Vec]
iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
iteri2 [Slap_S.Vec]
iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
iteri2 [Slap_D.Vec]
iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
iteri2 [Slap_vec]
iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
iteri3 [Slap_C.Vec]
iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
iteri3 [Slap_Z.Vec]
iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
iteri3 [Slap_S.Vec]
iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
iteri3 [Slap_D.Vec]
iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
iteri3 [Slap_vec]
iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.

K
kind [Slap_mat]
kind [Slap_vec]

L
lacaml_svd_job [Slap_common]
lacaml_trans2 [Slap_common]
lacaml_trans3 [Slap_common]
lacpy [Slap_C]
lacpy ?uplo ?b a copies the matrix a into the matrix b.
lacpy [Slap_Z]
lacpy ?uplo ?b a copies the matrix a into the matrix b.
lacpy [Slap_S]
lacpy ?uplo ?b a copies the matrix a into the matrix b.
lacpy [Slap_D]
lacpy ?uplo ?b a copies the matrix a into the matrix b.
lamch [Slap_S]
lamch cmach see LAPACK documentation.
lamch [Slap_D]
lamch cmach see LAPACK documentation.
lange [Slap_C]
lange ?norm ?work a
lange [Slap_Z]
lange ?norm ?work a
lange [Slap_S]
lange ?norm ?work a
lange [Slap_D]
lange ?norm ?work a
lange_min_lwork [Slap_C]
lange_min_lwork m norm computes the minimum length of workspace for lange routine.
lange_min_lwork [Slap_Z]
lange_min_lwork m norm computes the minimum length of workspace for lange routine.
lange_min_lwork [Slap_S]
lange_min_lwork m norm computes the minimum length of workspace for lange routine.
lange_min_lwork [Slap_D]
lange_min_lwork m norm computes the minimum length of workspace for lange routine.
lansy [Slap_S]
lansy ?up ?norm ?work a
lansy [Slap_D]
lansy ?up ?norm ?work a
lansy_min_lwork [Slap_S]
lansy_min_lwork n norm computes the minimum length of workspace for lansy routine.
lansy_min_lwork [Slap_D]
lansy_min_lwork n norm computes the minimum length of workspace for lansy routine.
larnv [Slap_C]
larnv ?idist ?iseed ~x () generates a random vector with the random distribution specified by idist and random seed iseed.
larnv [Slap_Z]
larnv ?idist ?iseed ~x () generates a random vector with the random distribution specified by idist and random seed iseed.
larnv [Slap_S]
larnv ?idist ?iseed ~x () generates a random vector with the random distribution specified by idist and random seed iseed.
larnv [Slap_D]
larnv ?idist ?iseed ~x () generates a random vector with the random distribution specified by idist and random seed iseed.
lassq [Slap_C]
lassq ?scale ?sumsq x
lassq [Slap_Z]
lassq ?scale ?sumsq x
lassq [Slap_S]
lassq ?scale ?sumsq x
lassq [Slap_D]
lassq ?scale ?sumsq x
last [Slap_C.Vec]
last [Slap_Z.Vec]
last [Slap_S.Vec]
last [Slap_D.Vec]
last [Slap_vec]
last_dyn [Slap_C.Vec]
last_dyn [Slap_Z.Vec]
last_dyn [Slap_S.Vec]
last_dyn [Slap_D.Vec]
last_dyn [Slap_vec]
lauum [Slap_C]
lauum ?up a computes
lauum [Slap_Z]
lauum ?up a computes
lauum [Slap_S]
lauum ?up a computes
lauum [Slap_D]
lauum ?up a computes
left [Slap_common]
Left multiplication
log [Slap_S.Vec]
log ?y (x1, x2, ..., xn) returns (log x1, log x2, ..., log xn).
log [Slap_D.Vec]
log ?y (x1, x2, ..., xn) returns (log x1, log x2, ..., log xn).
lower [Slap_common]
Using the lower triangular (or trapezoidal) part of a matrix.
lsc [Slap_io.Toplevel]
An alias of ssc for compatibility with Lacaml.
luband_dyn [Slap_C.Mat]
luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band storage for LU factorization.
luband_dyn [Slap_Z.Mat]
luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band storage for LU factorization.
luband_dyn [Slap_S.Mat]
luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band storage for LU factorization.
luband_dyn [Slap_D.Mat]
luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band storage for LU factorization.
luband_dyn [Slap_mat]
luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band storage for LU factorization.
luband_dyn [Slap_size]
luband_dyn m n kl ku computs the band storage size for LU factorization of m-by-n band matrices with kl subdiagonals and ku superdiagonals.

M
major [Slap_version]
The major version of SLAP.
make [Slap_C.Mat]
make m n x
make [Slap_C.Vec]
make n a
make [Slap_Z.Mat]
make m n x
make [Slap_Z.Vec]
make n a
make [Slap_S.Mat]
make m n x
make [Slap_S.Vec]
make n a
make [Slap_D.Mat]
make m n x
make [Slap_D.Vec]
make n a
make [Slap_mat]
make kind m n x
make [Slap_vec]
make kind n a
make0 [Slap_C.Mat]
make0 m n
make0 [Slap_C.Vec]
zeros n
make0 [Slap_Z.Mat]
make0 m n
make0 [Slap_Z.Vec]
zeros n
make0 [Slap_S.Mat]
make0 m n
make0 [Slap_S.Vec]
zeros n
make0 [Slap_D.Mat]
make0 m n
make0 [Slap_D.Vec]
zeros n
make1 [Slap_C.Mat]
make1 m n
make1 [Slap_C.Vec]
make1 n
make1 [Slap_Z.Mat]
make1 m n
make1 [Slap_Z.Vec]
make1 n
make1 [Slap_S.Mat]
make1 m n
make1 [Slap_S.Vec]
make1 n
make1 [Slap_D.Mat]
make1 m n
make1 [Slap_D.Vec]
make1 n
map [Slap_C.Mat]
map [Slap_C.Vec]
map f ?y (x1, ..., xn) is (f x1, ..., f xn).
map [Slap_Z.Mat]
map [Slap_Z.Vec]
map f ?y (x1, ..., xn) is (f x1, ..., f xn).
map [Slap_S.Mat]
map [Slap_S.Vec]
map f ?y (x1, ..., xn) is (f x1, ..., f xn).
map [Slap_D.Mat]
map [Slap_D.Vec]
map f ?y (x1, ..., xn) is (f x1, ..., f xn).
map [Slap_mat]
map [Slap_vec]
map kind f ?y (x1, ..., xn) is (f x1, ..., f xn).
map2 [Slap_C.Vec]
map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f x1 y1, f x2 y2, ..., f xn yn).
map2 [Slap_Z.Vec]
map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f x1 y1, f x2 y2, ..., f xn yn).
map2 [Slap_S.Vec]
map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f x1 y1, f x2 y2, ..., f xn yn).
map2 [Slap_D.Vec]
map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f x1 y1, f x2 y2, ..., f xn yn).
map2 [Slap_vec]
map2 kind f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f x1 y1, f x2 y2, ..., f xn yn).
map3 [Slap_C.Vec]
map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
map3 [Slap_Z.Vec]
map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
map3 [Slap_S.Vec]
map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
map3 [Slap_D.Vec]
map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
map3 [Slap_vec]
map3 kind f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
mapi [Slap_C.Mat]
mapi [Slap_C.Vec]
mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with the vector's dimension n.
mapi [Slap_Z.Mat]
mapi [Slap_Z.Vec]
mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with the vector's dimension n.
mapi [Slap_S.Mat]
mapi [Slap_S.Vec]
mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with the vector's dimension n.
mapi [Slap_D.Mat]
mapi [Slap_D.Vec]
mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with the vector's dimension n.
mapi [Slap_mat]
mapi [Slap_vec]
mapi kind f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with the vector's dimension n.
mapi2 [Slap_C.Vec]
mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
mapi2 [Slap_Z.Vec]
mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
mapi2 [Slap_S.Vec]
mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
mapi2 [Slap_D.Vec]
mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
mapi2 [Slap_vec]
mapi2 kind f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is (f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
mapi3 [Slap_C.Vec]
mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors' dimension n.
mapi3 [Slap_Z.Vec]
mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors' dimension n.
mapi3 [Slap_S.Vec]
mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors' dimension n.
mapi3 [Slap_D.Vec]
mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors' dimension n.
mapi3 [Slap_vec]
mapi3 kind f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is (f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors' dimension n.
max [Slap_C.Vec]
max x
max [Slap_Z.Vec]
max x
max [Slap_S.Vec]
max x
max [Slap_D.Vec]
max x
max [Slap_size]
max m n
mem [Slap_vec]
mem ?equal a v
micro [Slap_version]
The micro version of SLAP.
min [Slap_C.Vec]
min x
min [Slap_Z.Vec]
min x
min [Slap_S.Vec]
min x
min [Slap_D.Vec]
min x
min [Slap_size]
min m n
minor [Slap_version]
The minor version of SLAP.
mul [Slap_C.Vec]
mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 * y1, x2 * y2, ..., xn * yn).
mul [Slap_Z.Vec]
mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 * y1, x2 * y2, ..., xn * yn).
mul [Slap_S.Vec]
mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 * y1, x2 * y2, ..., xn * yn).
mul [Slap_D.Vec]
mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 * y1, x2 * y2, ..., xn * yn).
mul [Slap_size]
mul m n

N
neg [Slap_C.Vec]
neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
neg [Slap_Z.Vec]
neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
neg [Slap_S.Vec]
neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
neg [Slap_D.Vec]
neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
nine [Slap_size]
non_unit [Slap_common]
A matrix is not unit triagular.
nonzero [Slap_size]
nonzero n returns true if size n is not zero.
norm_1 [Slap_common]
1-norm of a matrix (maximum column sum).
norm_amax [Slap_common]
Largest absolute value of a matrix.
norm_frob [Slap_common]
Frobenius norm of a matrix.
norm_inf [Slap_common]
Infinity-norm of a matrix (maximum row sum).
normal [Slap_common]
Non-transposed matrix.
nrm2 [Slap_C]
nrm2 x retruns the L2 norm of vector x: ||x||.
nrm2 [Slap_Z]
nrm2 x retruns the L2 norm of vector x: ||x||.
nrm2 [Slap_S]
nrm2 x retruns the L2 norm of vector x: ||x||.
nrm2 [Slap_D]
nrm2 x retruns the L2 norm of vector x: ||x||.

O
of_array [Slap_C.Mat]
module M = (val of_array aa : CNTMAT)
of_array [Slap_C.Vec]
module V = (val of_array [|a1; ...; an|] : CNTVEC)
of_array [Slap_Z.Mat]
module M = (val of_array aa : CNTMAT)
of_array [Slap_Z.Vec]
module V = (val of_array [|a1; ...; an|] : CNTVEC)
of_array [Slap_S.Mat]
module M = (val of_array aa : CNTMAT)
of_array [Slap_S.Vec]
module V = (val of_array [|a1; ...; an|] : CNTVEC)
of_array [Slap_D.Mat]
module M = (val of_array aa : CNTMAT)
of_array [Slap_D.Vec]
module V = (val of_array [|a1; ...; an|] : CNTVEC)
of_array_c [Slap_C.Mat]
let Slap.Mat.MAT n = of_array_c arr
of_array_c [Slap_C.Vec]
let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
of_array_c [Slap_Z.Mat]
let Slap.Mat.MAT n = of_array_c arr
of_array_c [Slap_Z.Vec]
let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
of_array_c [Slap_S.Mat]
let Slap.Mat.MAT n = of_array_c arr
of_array_c [Slap_S.Vec]
let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
of_array_c [Slap_D.Mat]
let Slap.Mat.MAT n = of_array_c arr
of_array_c [Slap_D.Vec]
let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
of_array_c [Slap_mat]
let MAT n = of_array_c kind arr
of_array_c [Slap_vec]
let VEC n = of_array_c kind [|a1; ...; an|]
of_array_dyn [Slap_C.Mat]
Build a matrix initialized from the given array of arrays.
of_array_dyn [Slap_C.Vec]
of_array_dyn n [|a1; ...; an|]
of_array_dyn [Slap_Z.Mat]
Build a matrix initialized from the given array of arrays.
of_array_dyn [Slap_Z.Vec]
of_array_dyn n [|a1; ...; an|]
of_array_dyn [Slap_S.Mat]
Build a matrix initialized from the given array of arrays.
of_array_dyn [Slap_S.Vec]
of_array_dyn n [|a1; ...; an|]
of_array_dyn [Slap_D.Mat]
Build a matrix initialized from the given array of arrays.
of_array_dyn [Slap_D.Vec]
of_array_dyn n [|a1; ...; an|]
of_array_dyn [Slap_mat]
Build a matrix initialized from the given array of arrays.
of_array_dyn [Slap_vec]
of_array_dyn kind n [|a1; ...; an|]
of_bigarray [Slap_C.Mat]
module M = (val of_bigarray ba : CNTMAT)
of_bigarray [Slap_C.Vec]
module V = (val of_bigarray ?share n ba : CNTVEC)
of_bigarray [Slap_Z.Mat]
module M = (val of_bigarray ba : CNTMAT)
of_bigarray [Slap_Z.Vec]
module V = (val of_bigarray ?share n ba : CNTVEC)
of_bigarray [Slap_S.Mat]
module M = (val of_bigarray ba : CNTMAT)
of_bigarray [Slap_S.Vec]
module V = (val of_bigarray ?share n ba : CNTVEC)
of_bigarray [Slap_D.Mat]
module M = (val of_bigarray ba : CNTMAT)
of_bigarray [Slap_D.Vec]
module V = (val of_bigarray ?share n ba : CNTVEC)
of_bigarray_c [Slap_C.Mat]
let Slap.Mat.MAT n = of_bigarray_c ?share ba
of_bigarray_c [Slap_C.Vec]
let Slap.Vec.VEC n = of_bigarray_c ?share ba
of_bigarray_c [Slap_Z.Mat]
let Slap.Mat.MAT n = of_bigarray_c ?share ba
of_bigarray_c [Slap_Z.Vec]
let Slap.Vec.VEC n = of_bigarray_c ?share ba
of_bigarray_c [Slap_S.Mat]
let Slap.Mat.MAT n = of_bigarray_c ?share ba
of_bigarray_c [Slap_S.Vec]
let Slap.Vec.VEC n = of_bigarray_c ?share ba
of_bigarray_c [Slap_D.Mat]
let Slap.Mat.MAT n = of_bigarray_c ?share ba
of_bigarray_c [Slap_D.Vec]
let Slap.Vec.VEC n = of_bigarray_c ?share ba
of_bigarray_c [Slap_mat]
let MAT n = of_bigarray_c ?share ba
of_bigarray_c [Slap_vec]
let VEC n = of_bigarray_c ?share ba
of_bigarray_dyn [Slap_C.Mat]
of_bigarray_dyn ?share m n ba
of_bigarray_dyn [Slap_C.Vec]
of_bigarray_dyn ?share n ba
of_bigarray_dyn [Slap_Z.Mat]
of_bigarray_dyn ?share m n ba
of_bigarray_dyn [Slap_Z.Vec]
of_bigarray_dyn ?share n ba
of_bigarray_dyn [Slap_S.Mat]
of_bigarray_dyn ?share m n ba
of_bigarray_dyn [Slap_S.Vec]
of_bigarray_dyn ?share n ba
of_bigarray_dyn [Slap_D.Mat]
of_bigarray_dyn ?share m n ba
of_bigarray_dyn [Slap_D.Vec]
of_bigarray_dyn ?share n ba
of_bigarray_dyn [Slap_mat]
of_bigarray_dyn ?share m n ba
of_bigarray_dyn [Slap_vec]
of_bigarray_dyn ?share n ba
of_col_vecs_dyn [Slap_C.Mat]
of_col_vecs_dyn [Slap_Z.Mat]
of_col_vecs_dyn [Slap_S.Mat]
of_col_vecs_dyn [Slap_D.Mat]
of_int_c_dyn [Slap_size]
let SIZE n = of_int_c_dyn i
of_int_dyn [Slap_size]
module N = (val of_int_dyn n : SIZE)
of_list [Slap_C.Mat]
module M = (val of_list ll : CNTMAT)
of_list [Slap_C.Vec]
module V = (val of_list [a1; ...; an] : CNTVEC)
of_list [Slap_Z.Mat]
module M = (val of_list ll : CNTMAT)
of_list [Slap_Z.Vec]
module V = (val of_list [a1; ...; an] : CNTVEC)
of_list [Slap_S.Mat]
module M = (val of_list ll : CNTMAT)
of_list [Slap_S.Vec]
module V = (val of_list [a1; ...; an] : CNTVEC)
of_list [Slap_D.Mat]
module M = (val of_list ll : CNTMAT)
of_list [Slap_D.Vec]
module V = (val of_list [a1; ...; an] : CNTVEC)
of_list_c [Slap_C.Mat]
let Slap.Mat.MAT n = of_list_c kind lst
of_list_c [Slap_C.Vec]
let Slap.Vec.VEC n = of_list_c [a1; ...; an]
of_list_c [Slap_Z.Mat]
let Slap.Mat.MAT n = of_list_c kind lst
of_list_c [Slap_Z.Vec]
let Slap.Vec.VEC n = of_list_c [a1; ...; an]
of_list_c [Slap_S.Mat]
let Slap.Mat.MAT n = of_list_c kind lst
of_list_c [Slap_S.Vec]
let Slap.Vec.VEC n = of_list_c [a1; ...; an]
of_list_c [Slap_D.Mat]
let Slap.Mat.MAT n = of_list_c kind lst
of_list_c [Slap_D.Vec]
let Slap.Vec.VEC n = of_list_c [a1; ...; an]
of_list_c [Slap_mat]
let MAT n = of_list_c kind lst
of_list_c [Slap_vec]
let VEC n = of_list_c kind [a1; ...; an]
of_list_dyn [Slap_C.Mat]
Build a matrix initialized from the given list of lists.
of_list_dyn [Slap_C.Vec]
of_list_dyn n [a1; ...; an]
of_list_dyn [Slap_Z.Mat]
Build a matrix initialized from the given list of lists.
of_list_dyn [Slap_Z.Vec]
of_list_dyn n [a1; ...; an]
of_list_dyn [Slap_S.Mat]
Build a matrix initialized from the given list of lists.
of_list_dyn [Slap_S.Vec]
of_list_dyn n [a1; ...; an]
of_list_dyn [Slap_D.Mat]
Build a matrix initialized from the given list of lists.
of_list_dyn [Slap_D.Vec]
of_list_dyn n [a1; ...; an]
of_list_dyn [Slap_mat]
Build a matrix initialized from the given list of lists.
of_list_dyn [Slap_vec]
of_list_dyn kind n [a1; ...; an]
one [Slap_size]
opt_cnt_vec [Slap_vec]
opt_cnt_vec_alloc [Slap_vec]
opt_mat [Slap_mat]
opt_mat_alloc [Slap_mat]
opt_vec [Slap_vec]
opt_vec_alloc [Slap_vec]
opt_work [Slap_vec]
orgqr_dyn [Slap_S]
orgqr_dyn ?work ~tau a generates the orthogonal matrix Q of the QR factorization formed by geqrf/geqpf.
orgqr_dyn [Slap_D]
orgqr_dyn ?work ~tau a generates the orthogonal matrix Q of the QR factorization formed by geqrf/geqpf.
orgqr_min_lwork [Slap_S]
orgqr_min_lwork ~n computes the minimum length of workspace for orgqr routine.
orgqr_min_lwork [Slap_D]
orgqr_min_lwork ~n computes the minimum length of workspace for orgqr routine.
orgqr_opt_lwork [Slap_S]
orgqr_min_lwork ~tau a computes the optimum length of workspace for orgqr routine.
orgqr_opt_lwork [Slap_D]
orgqr_min_lwork ~tau a computes the optimum length of workspace for orgqr routine.
ormqr_dyn [Slap_S]
ormqr_dyn ~side ~trans ?work ~tau a c multiplies a matrix c by the orthogonal matrix Q of the QR factorization formed by geqrf/geqpf:
ormqr_dyn [Slap_D]
ormqr_dyn ~side ~trans ?work ~tau a c multiplies a matrix c by the orthogonal matrix Q of the QR factorization formed by geqrf/geqpf:
ormqr_min_lwork [Slap_S]
ormqr_min_lwork ~side ~m ~n computes the minimum length of workspace for ormqr routine.
ormqr_min_lwork [Slap_D]
ormqr_min_lwork ~side ~m ~n computes the minimum length of workspace for ormqr routine.
ormqr_opt_lwork [Slap_S]
ormqr_opt_lwork ~side ~trans ~tau a c computes the optimum length of workspace for ormqr routine.
ormqr_opt_lwork [Slap_D]
ormqr_opt_lwork ~side ~trans ~tau a c computes the optimum length of workspace for ormqr routine.

P
packed [Slap_C.Mat]
packed ?up ?x a transforms matrix a into packed storage format.
packed [Slap_Z.Mat]
packed ?up ?x a transforms matrix a into packed storage format.
packed [Slap_S.Mat]
packed ?up ?x a transforms matrix a into packed storage format.
packed [Slap_D.Mat]
packed ?up ?x a transforms matrix a into packed storage format.
packed [Slap_mat]
packed ?up ?x a transforms triangular matrix a into packed storage format.
packed [Slap_size]
packed n computes the packed storage size of a n-by-n matrix.
pbsv [Slap_C]
pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where ab is a 'n-by-'n symmetric positive-definite band matrix with kd subdiangonals, stored in band storage format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
pbsv [Slap_Z]
pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where ab is a 'n-by-'n symmetric positive-definite band matrix with kd subdiangonals, stored in band storage format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
pbsv [Slap_S]
pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where ab is a 'n-by-'n symmetric positive-definite band matrix with kd subdiangonals, stored in band storage format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
pbsv [Slap_D]
pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where ab is a 'n-by-'n symmetric positive-definite band matrix with kd subdiangonals, stored in band storage format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
pocon [Slap_S]
pocon ?up ?anorm ?work ?iwork a estimates the reciprocal of the condition number of symmetric positive-definite matrix a.
pocon [Slap_D]
pocon ?up ?anorm ?work ?iwork a estimates the reciprocal of the condition number of symmetric positive-definite matrix a.
pocon_min_liwork [Slap_S]
pocon_min_liwork n computes the minimum length of workspace iwork for pocon routine.
pocon_min_liwork [Slap_D]
pocon_min_liwork n computes the minimum length of workspace iwork for pocon routine.
pocon_min_lwork [Slap_S]
pocon_min_lwork n computes the minimum length of workspace work for pocon routine.
pocon_min_lwork [Slap_D]
pocon_min_lwork n computes the minimum length of workspace work for pocon routine.
posv [Slap_C]
posv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
posv [Slap_Z]
posv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
posv [Slap_S]
posv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
posv [Slap_D]
posv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
potrf [Slap_C]
potrf ?up ?jitter a computes the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potrf [Slap_Z]
potrf ?up ?jitter a computes the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potrf [Slap_S]
potrf ?up ?jitter a computes the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potrf [Slap_D]
potrf ?up ?jitter a computes the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potri [Slap_C]
potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian) positive-definite matrix a using the Cholesky factorization:
potri [Slap_Z]
potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian) positive-definite matrix a using the Cholesky factorization:
potri [Slap_S]
potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian) positive-definite matrix a using the Cholesky factorization:
potri [Slap_D]
potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian) positive-definite matrix a using the Cholesky factorization:
potrs [Slap_C]
potrf ?up a ?jitter b solves systems of linear equations a * x = b using the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potrs [Slap_Z]
potrf ?up a ?jitter b solves systems of linear equations a * x = b using the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potrs [Slap_S]
potrf ?up a ?jitter b solves systems of linear equations a * x = b using the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
potrs [Slap_D]
potrf ?up a ?jitter b solves systems of linear equations a * x = b using the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix a:
pp_cmat [Slap_io.Toplevel]
pp_cmat [Slap_io]
pp_complex_el_default [Slap_io]
fprintf ppf "(%G, %Gi)" x.re x.im
pp_cvec [Slap_io.Toplevel]
pp_cvec [Slap_io]
pp_float_el_default [Slap_io]
fprintf ppf "%G" el
pp_fmat [Slap_io.Toplevel]
pp_fmat [Slap_io]
pp_fvec [Slap_io.Toplevel]
pp_fvec [Slap_io]
pp_imat [Slap_io.Toplevel]
pp_imat [Slap_io]
pp_int32_el_default [Slap_io]
fprintf ppf "%ld" x
pp_ivec [Slap_io.Toplevel]
pp_ivec [Slap_io]
pp_mat [Slap_C]
A pretty-printer for matrices.
pp_mat [Slap_Z]
A pretty-printer for matrices.
pp_mat [Slap_S]
A pretty-printer for matrices.
pp_mat [Slap_D]
A pretty-printer for matrices.
pp_mat_gen [Slap_io]
A generator of pretty printers for matrices.
pp_num [Slap_C]
A pretty-printer for elements in vectors and matrices.
pp_num [Slap_Z]
A pretty-printer for elements in vectors and matrices.
pp_num [Slap_S]
A pretty-printer for elements in vectors and matrices.
pp_num [Slap_D]
A pretty-printer for elements in vectors and matrices.
pp_rcvec [Slap_io.Toplevel]
pp_rcvec [Slap_io]
pp_rfvec [Slap_io.Toplevel]
pp_rfvec [Slap_io]
pp_rivec [Slap_io.Toplevel]
pp_rivec [Slap_io]
pp_rvec_gen [Slap_io]
A generator of pretty printers for row vectors.
pp_table [Slap_io]
pp_table ?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col ?pp_left ?pp_right ?pad ?ellipsis ?vertical_context ?horizontal_context pp_el ppf n_rows n_cols get_el
pp_vec [Slap_C]
A pretty-printer for column vectors.
pp_vec [Slap_Z]
A pretty-printer for column vectors.
pp_vec [Slap_S]
A pretty-printer for column vectors.
pp_vec [Slap_D]
A pretty-printer for column vectors.
pp_vec_gen [Slap_io]
A generator of pretty printers for (column) vectors.
ppsv [Slap_C]
ppsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix stored in packed format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ppsv [Slap_Z]
ppsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix stored in packed format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ppsv [Slap_S]
ppsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix stored in packed format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ppsv [Slap_D]
ppsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric positive-definite matrix stored in packed format, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
prec [Slap_C]
prec [Slap_Z]
prec [Slap_S]
prec [Slap_D]
pred [Slap_size]
pred n returns
pred_dyn [Slap_size]
pred_dyn n
prod [Slap_C.Vec]
prod x
prod [Slap_Z.Vec]
prod x
prod [Slap_S.Vec]
prod x
prod [Slap_D.Vec]
prod x
ptsv [Slap_C]
ptsv d e b solves systems of linear equations A * x = b where A is a 'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal elements d and subdiagonal elements e, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ptsv [Slap_Z]
ptsv d e b solves systems of linear equations A * x = b where A is a 'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal elements d and subdiagonal elements e, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ptsv [Slap_S]
ptsv d e b solves systems of linear equations A * x = b where A is a 'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal elements d and subdiagonal elements e, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ptsv [Slap_D]
ptsv d e b solves systems of linear equations A * x = b where A is a 'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal elements d and subdiagonal elements e, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.

R
random [Slap_C.Mat]
random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly initialized with the uniform distribution between re_from/im_from and re_from+re_range/im_from+im_range for real and imaginary parts, respectively.
random [Slap_C.Vec]
random ?rnd_state ?from ?range n creates a n-dimensional vector randomly initialized with the uniform distribution between re_from/im_from and re_from+re_range/im_from+im_range for real and imaginary parts, respectively.
random [Slap_Z.Mat]
random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly initialized with the uniform distribution between re_from/im_from and re_from+re_range/im_from+im_range for real and imaginary parts, respectively.
random [Slap_Z.Vec]
random ?rnd_state ?from ?range n creates a n-dimensional vector randomly initialized with the uniform distribution between re_from/im_from and re_from+re_range/im_from+im_range for real and imaginary parts, respectively.
random [Slap_S.Mat]
random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly initialized with the uniform distribution between from and from + range.
random [Slap_S.Vec]
random ?rnd_state ?from ?range n creates a n-dimensional vector randomly initialized with the uniform distribution between from and from + range.
random [Slap_D.Mat]
random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly initialized with the uniform distribution between from and from + range.
random [Slap_D.Vec]
random ?rnd_state ?from ?range n creates a n-dimensional vector randomly initialized with the uniform distribution between from and from + range.
reci [Slap_C.Vec]
reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
reci [Slap_Z.Vec]
reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
reci [Slap_S.Vec]
reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
reci [Slap_D.Vec]
reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
replace_all [Slap_C.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f aij.
replace_all [Slap_C.Vec]
replace_all x f modifies the vector x in place -- the i-th element xi of x will be set to f xi.
replace_all [Slap_Z.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f aij.
replace_all [Slap_Z.Vec]
replace_all x f modifies the vector x in place -- the i-th element xi of x will be set to f xi.
replace_all [Slap_S.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f aij.
replace_all [Slap_S.Vec]
replace_all x f modifies the vector x in place -- the i-th element xi of x will be set to f xi.
replace_all [Slap_D.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f aij.
replace_all [Slap_D.Vec]
replace_all x f modifies the vector x in place -- the i-th element xi of x will be set to f xi.
replace_all [Slap_mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f aij.
replace_all [Slap_vec]
replace_all x f modifies the vector x in place -- the i-th element xi of x will be set to f xi.
replace_alli [Slap_C.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f i j aij.
replace_alli [Slap_C.Vec]
replace_alli x f modifies the vector x in place -- the i-th element xi of x will be set to f i xi.
replace_alli [Slap_Z.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f i j aij.
replace_alli [Slap_Z.Vec]
replace_alli x f modifies the vector x in place -- the i-th element xi of x will be set to f i xi.
replace_alli [Slap_S.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f i j aij.
replace_alli [Slap_S.Vec]
replace_alli x f modifies the vector x in place -- the i-th element xi of x will be set to f i xi.
replace_alli [Slap_D.Mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f i j aij.
replace_alli [Slap_D.Vec]
replace_alli x f modifies the vector x in place -- the i-th element xi of x will be set to f i xi.
replace_alli [Slap_mat]
replace_all a f modifies the matrix a in place -- the (i,j)-element aij of a will be set to f i j aij.
replace_alli [Slap_vec]
replace_alli x f modifies the vector x in place -- the i-th element xi of x will be set to f i xi.
replace_dyn [Slap_C.Vec]
replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
replace_dyn [Slap_Z.Vec]
replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
replace_dyn [Slap_S.Vec]
replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
replace_dyn [Slap_D.Vec]
replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
replace_dyn [Slap_mat]
replace_dyn a i j f is set a i j (f (get a i j)).
replace_dyn [Slap_vec]
replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
rev [Slap_C.Vec]
rev (x1, x2, ..., xn)
rev [Slap_Z.Vec]
rev (x1, x2, ..., xn)
rev [Slap_S.Vec]
rev (x1, x2, ..., xn)
rev [Slap_D.Vec]
rev (x1, x2, ..., xn)
rev [Slap_vec]
rev (x1, x2, ..., xn)
right [Slap_common]
Right multiplication
riter [Slap_size]
riter f n is f n; ...; f 2; f 1.
riteri [Slap_size]
riteri f n is f (to_int n); ...; f 2; f 1.
row_dyn [Slap_C.Mat]
row_dyn a i
row_dyn [Slap_Z.Mat]
row_dyn a i
row_dyn [Slap_S.Mat]
row_dyn a i
row_dyn [Slap_D.Mat]
row_dyn a i
row_dyn [Slap_mat]
row_dyn a i
rprec [Slap_C]
rprec [Slap_Z]
rprec [Slap_S]
rprec [Slap_D]

S
sbev [Slap_S]
sbev ~kd ?z ?up ?work ?w ab computes all eigenvalues and, optionally, eigenvectors of real symmetric band matrix ab store in band storage format.
sbev [Slap_D]
sbev ~kd ?z ?up ?work ?w ab computes all eigenvalues and, optionally, eigenvectors of real symmetric band matrix ab store in band storage format.
sbev_min_lwork [Slap_S]
sbev_min_lwork n computes the minimum length of workspace work for sbev routine.
sbev_min_lwork [Slap_D]
sbev_min_lwork n computes the minimum length of workspace work for sbev routine.
sbgv [Slap_S]
sbgv ~ka ~kb ?z ?up ?work ?w ab bb solves a general eigenvalue problem ab * z = (lambda) * bb * z where ab is a 'n-by-'n symmetric band matrix with ka subdiagonals, and bb is a 'n-by-'n symmetric positive-definite band matrix with kb subdiagonals.
sbgv [Slap_D]
sbgv ~ka ~kb ?z ?up ?work ?w ab bb solves a general eigenvalue problem ab * z = (lambda) * bb * z where ab is a 'n-by-'n symmetric band matrix with ka subdiagonals, and bb is a 'n-by-'n symmetric positive-definite band matrix with kb subdiagonals.
sbmv [Slap_S]
sbmv ~k ?y a ?up ?alpha ?beta x computes y := alpha * a * x + beta * y where a is a 'n-by-'n symmetric band matrix with k super-(or sub-)diagonals, and x and y are 'n-dimensional vectors.
sbmv [Slap_D]
sbmv ~k ?y a ?up ?alpha ?beta x computes y := alpha * a * x + beta * y where a is a 'n-by-'n symmetric band matrix with k super-(or sub-)diagonals, and x and y are 'n-dimensional vectors.
scal [Slap_C.Mat]
scal alpha a computes a := alpha * a with the scalar value alpha and the matrix a.
scal [Slap_C]
scal c x multiplies all elements in x by scalar value c, and destructively assigns the result to x.
scal [Slap_Z.Mat]
scal alpha a computes a := alpha * a with the scalar value alpha and the matrix a.
scal [Slap_Z]
scal c x multiplies all elements in x by scalar value c, and destructively assigns the result to x.
scal [Slap_S.Mat]
scal alpha a computes a := alpha * a with the scalar value alpha and the matrix a.
scal [Slap_S]
scal c x multiplies all elements in x by scalar value c, and destructively assigns the result to x.
scal [Slap_D.Mat]
scal alpha a computes a := alpha * a with the scalar value alpha and the matrix a.
scal [Slap_D]
scal c x multiplies all elements in x by scalar value c, and destructively assigns the result to x.
scal_cols [Slap_C.Mat]
A column-wise scal function for matrices.
scal_cols [Slap_Z.Mat]
A column-wise scal function for matrices.
scal_cols [Slap_S.Mat]
A column-wise scal function for matrices.
scal_cols [Slap_D.Mat]
A column-wise scal function for matrices.
scal_rows [Slap_C.Mat]
A row-wise scal function for matrices.
scal_rows [Slap_Z.Mat]
A row-wise scal function for matrices.
scal_rows [Slap_S.Mat]
A row-wise scal function for matrices.
scal_rows [Slap_D.Mat]
A row-wise scal function for matrices.
set_dim_defaults [Slap_io.Context]
set_dim_defaults opt_n sets both Slap_io.Context.vertical_default and Slap_io.Context.horizontal_default to opt_n.
set_dyn [Slap_C.Mat]
set_dyn a i j x assigns x to the (i,j) element of the matrix a.
set_dyn [Slap_C.Vec]
set_dyn x i a assigns a to the i-th element of the vector x.
set_dyn [Slap_Z.Mat]
set_dyn a i j x assigns x to the (i,j) element of the matrix a.
set_dyn [Slap_Z.Vec]
set_dyn x i a assigns a to the i-th element of the vector x.
set_dyn [Slap_S.Mat]
set_dyn a i j x assigns x to the (i,j) element of the matrix a.
set_dyn [Slap_S.Vec]
set_dyn x i a assigns a to the i-th element of the vector x.
set_dyn [Slap_D.Mat]
set_dyn a i j x assigns x to the (i,j) element of the matrix a.
set_dyn [Slap_D.Vec]
set_dyn x i a assigns a to the i-th element of the vector x.
set_dyn [Slap_mat]
set_dyn a i j x assigns x to the (i,j) element of the matrix a.
set_dyn [Slap_vec]
set_dyn x i a assigns a to the i-th element of the vector x.
seven [Slap_size]
shared_rev [Slap_C.Vec]
shared_rev (x1, x2, ..., xn)
shared_rev [Slap_Z.Vec]
shared_rev (x1, x2, ..., xn)
shared_rev [Slap_S.Vec]
shared_rev (x1, x2, ..., xn)
shared_rev [Slap_D.Vec]
shared_rev (x1, x2, ..., xn)
shared_rev [Slap_vec]
shared_rev (x1, x2, ..., xn)
sin [Slap_S.Vec]
sin ?y (x1, x2, ..., xn) returns (sin x1, sin x2, ..., sin xn).
sin [Slap_D.Vec]
sin ?y (x1, x2, ..., xn) returns (sin x1, sin x2, ..., sin xn).
six [Slap_size]
sort [Slap_C.Vec]
sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order according to the comparison function cmp.
sort [Slap_Z.Vec]
sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order according to the comparison function cmp.
sort [Slap_S.Vec]
sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order according to the comparison function cmp.
sort [Slap_D.Vec]
sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order according to the comparison function cmp.
spsv [Slap_C]
spsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix stored in packed format, each column of matrix b is the r.h.s.
spsv [Slap_Z]
spsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix stored in packed format, each column of matrix b is the r.h.s.
spsv [Slap_S]
spsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix stored in packed format, each column of matrix b is the r.h.s.
spsv [Slap_D]
spsv ?up a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix stored in packed format, each column of matrix b is the r.h.s.
sqr [Slap_S.Vec]
sqr ?y x computes the square of elements of the vector x.
sqr [Slap_D.Vec]
sqr ?y x computes the square of elements of the vector x.
sqr_nrm2 [Slap_C.Vec]
sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of vector x.
sqr_nrm2 [Slap_Z.Vec]
sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of vector x.
sqr_nrm2 [Slap_S.Vec]
sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of vector x.
sqr_nrm2 [Slap_D.Vec]
sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of vector x.
sqrt [Slap_S.Vec]
sqr ?y x computes the square root of elements of the vector x.
sqrt [Slap_D.Vec]
sqr ?y x computes the square root of elements of the vector x.
ssc [Slap_io.Toplevel]
SLAP Set Context: ssc n sets sets both Slap_io.Context.vertical_default and Slap_io.Context.horizontal_default to Some n.
ssqr [Slap_C.Vec]
ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the elements in the given vector from scalar value c: (x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
ssqr [Slap_Z.Vec]
ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the elements in the given vector from scalar value c: (x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
ssqr [Slap_S.Vec]
ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the elements in the given vector from scalar value c: (x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
ssqr [Slap_D.Vec]
ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the elements in the given vector from scalar value c: (x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
ssqr_diff [Slap_C.Vec]
ssqr_diff x yreturns the sum of squared differences of the elements of vectors x and y.
ssqr_diff [Slap_Z.Vec]
ssqr_diff x yreturns the sum of squared differences of the elements of vectors x and y.
ssqr_diff [Slap_S.Vec]
ssqr_diff x yreturns the sum of squared differences of the elements of vectors x and y.
ssqr_diff [Slap_D.Vec]
ssqr_diff x yreturns the sum of squared differences of the elements of vectors x and y.
sub [Slap_C.Vec]
sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 - y1, x2 - y2, ..., xn - yn).
sub [Slap_Z.Vec]
sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 - y1, x2 - y2, ..., xn - yn).
sub [Slap_S.Vec]
sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 - y1, x2 - y2, ..., xn - yn).
sub [Slap_D.Vec]
sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns (x1 - y1, x2 - y2, ..., xn - yn).
sub_dyn [Slap_size]
sub_dyn m n
subcntvec_dyn [Slap_C.Vec]
subcntvec_dyn m ?ofsx x
subcntvec_dyn [Slap_Z.Vec]
subcntvec_dyn m ?ofsx x
subcntvec_dyn [Slap_S.Vec]
subcntvec_dyn m ?ofsx x
subcntvec_dyn [Slap_D.Vec]
subcntvec_dyn m ?ofsx x
subcntvec_dyn [Slap_vec]
subcntvec_dyn m ?ofsx x
subdscvec_dyn [Slap_C.Vec]
subdscvec_dyn m ?ofsx ?incx x
subdscvec_dyn [Slap_Z.Vec]
subdscvec_dyn m ?ofsx ?incx x
subdscvec_dyn [Slap_S.Vec]
subdscvec_dyn m ?ofsx ?incx x
subdscvec_dyn [Slap_D.Vec]
subdscvec_dyn m ?ofsx ?incx x
subdscvec_dyn [Slap_vec]
subdscvec_dyn m ?ofsx ?incx x
submat_dyn [Slap_C.Mat]
submat_dyn m n ?ar ?ac a
submat_dyn [Slap_Z.Mat]
submat_dyn m n ?ar ?ac a
submat_dyn [Slap_S.Mat]
submat_dyn m n ?ar ?ac a
submat_dyn [Slap_D.Mat]
submat_dyn m n ?ar ?ac a
submat_dyn [Slap_mat]
submat_dyn m n ?ar ?ac a
subvec_dyn [Slap_C.Vec]
An alias of subdscvec_dyn.
subvec_dyn [Slap_Z.Vec]
An alias of subdscvec_dyn.
subvec_dyn [Slap_S.Vec]
An alias of subdscvec_dyn.
subvec_dyn [Slap_D.Vec]
An alias of subdscvec_dyn.
subvec_dyn [Slap_vec]
An alias of subdscvec_dyn.
succ [Slap_size]
succ n
sum [Slap_C.Mat]
sum a returns the sum of all elements in a.
sum [Slap_C.Vec]
sum x
sum [Slap_Z.Mat]
sum a returns the sum of all elements in a.
sum [Slap_Z.Vec]
sum x
sum [Slap_S.Mat]
sum a returns the sum of all elements in a.
sum [Slap_S.Vec]
sum x
sum [Slap_D.Mat]
sum a returns the sum of all elements in a.
sum [Slap_D.Vec]
sum x
svd_all [Slap_common]
svd_no [Slap_common]
svd_overwrite [Slap_common]
svd_top [Slap_common]
swap [Slap_C]
swap x y swaps elements in x and y.
swap [Slap_Z]
swap x y swaps elements in x and y.
swap [Slap_S]
swap x y swaps elements in x and y.
swap [Slap_D]
swap x y swaps elements in x and y.
syband_dyn [Slap_C.Mat]
syband_dyn kd ?b a converts matrix a into a matrix stored in symmetric or Hermitian band storage.
syband_dyn [Slap_Z.Mat]
syband_dyn kd ?b a converts matrix a into a matrix stored in symmetric or Hermitian band storage.
syband_dyn [Slap_S.Mat]
syband_dyn kd ?b a converts matrix a into a matrix stored in symmetric or Hermitian band storage.
syband_dyn [Slap_D.Mat]
syband_dyn kd ?b a converts matrix a into a matrix stored in symmetric or Hermitian band storage.
syband_dyn [Slap_mat]
syband_dyn kd ?b a converts matrix a into a matrix stored in symmetric or Hermitian band storage.
syband_dyn [Slap_size]
syband_dyn n kd computs the band storage size of symmetric or Hermitian band matrices with kd superdiagonals or subdiagonals.
sycon [Slap_S]
sycon ?up ?ipiv ?anorm ?work ?iwork a estimates the reciprocal of the condition number of symmetric matrix a.
sycon [Slap_D]
sycon ?up ?ipiv ?anorm ?work ?iwork a estimates the reciprocal of the condition number of symmetric matrix a.
sycon_min_liwork [Slap_S]
sycon_min_liwork n computes the minimum length of workspace iwork for sycon routine.
sycon_min_liwork [Slap_D]
sycon_min_liwork n computes the minimum length of workspace iwork for sycon routine.
sycon_min_lwork [Slap_S]
sycon_min_lwork n computes the minimum length of workspace work for sycon routine.
sycon_min_lwork [Slap_D]
sycon_min_lwork n computes the minimum length of workspace work for sycon routine.
syev [Slap_S]
syev ?vectors ?up ?work ?w a computes the eigenvalues and the eigenvectors of 'n-by-'n symmetric matrix a.
syev [Slap_D]
syev ?vectors ?up ?work ?w a computes the eigenvalues and the eigenvectors of 'n-by-'n symmetric matrix a.
syev_min_lwork [Slap_S]
syev_min_lwork n computes the minimum length of workspace for syev routine.
syev_min_lwork [Slap_D]
syev_min_lwork n computes the minimum length of workspace for syev routine.
syev_opt_lwork [Slap_S]
syev_opt_lwork ?vectors ?up a computes the optimum length of workspace for syev routine.
syev_opt_lwork [Slap_D]
syev_opt_lwork ?vectors ?up a computes the optimum length of workspace for syev routine.
syevd [Slap_S]
syev ?vectors ?up ?w a computes the eigenvalues and the eigenvectors of 'n-by-'n symmetric matrix a using divide and conquer method.
syevd [Slap_D]
syev ?vectors ?up ?w a computes the eigenvalues and the eigenvectors of 'n-by-'n symmetric matrix a using divide and conquer method.
syevd_min_liwork [Slap_S]
syevd_min_liwork ?vectors n computes the minimum length of workspace iwork for syevd routine.
syevd_min_liwork [Slap_D]
syevd_min_liwork ?vectors n computes the minimum length of workspace iwork for syevd routine.
syevd_min_lwork [Slap_S]
syevd_min_lwork ?vectors n computes the minimum length of workspace work for syevd routine.
syevd_min_lwork [Slap_D]
syevd_min_lwork ?vectors n computes the minimum length of workspace work for syevd routine.
syevd_opt_liwork [Slap_S]
syevd_opt_liwork ?vectors ?up a computes the optimum length of workspace iwork for syevd routine.
syevd_opt_liwork [Slap_D]
syevd_opt_liwork ?vectors ?up a computes the optimum length of workspace iwork for syevd routine.
syevd_opt_lwork [Slap_S]
syevd_opt_lwork ?vectors ?up a computes the optimum length of workspace work for syevd routine.
syevd_opt_lwork [Slap_D]
syevd_opt_lwork ?vectors ?up a computes the optimum length of workspace work for syevd routine.
syevr_dyn [Slap_S]
syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a computes selected eigenvalues w and, optionally, eigenvectors z of a real symmetric matrix a using the Relatively Robust Representations.
syevr_dyn [Slap_D]
syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a computes selected eigenvalues w and, optionally, eigenvectors z of a real symmetric matrix a using the Relatively Robust Representations.
syevr_min_liwork [Slap_S]
sbevr_min_liwork n computes the minimum length of workspace iwork for syevr routine.
syevr_min_liwork [Slap_D]
sbevr_min_liwork n computes the minimum length of workspace iwork for syevr routine.
syevr_min_lwork [Slap_S]
sbevr_min_lwork n computes the minimum length of workspace work for syevr routine.
syevr_min_lwork [Slap_D]
sbevr_min_lwork n computes the minimum length of workspace work for syevr routine.
syevr_opt_liwork [Slap_S]
sbevr_opt_liwork ?vectors ?range ?up ?abstol a computes the optimum length of workspace iwork for sbevr routine.
syevr_opt_liwork [Slap_D]
sbevr_opt_liwork ?vectors ?range ?up ?abstol a computes the optimum length of workspace iwork for sbevr routine.
syevr_opt_lwork [Slap_S]
sbevr_opt_lwork ?vectors ?range ?up ?abstol a computes the optimum length of workspace work for syevr routine.
syevr_opt_lwork [Slap_D]
sbevr_opt_lwork ?vectors ?range ?up ?abstol a computes the optimum length of workspace work for syevr routine.
sygv [Slap_S]
sygv ?vectors ?up ?work ?w ?itype a b solves a real generalized symmetric definite eigenproblem:
sygv [Slap_D]
sygv ?vectors ?up ?work ?w ?itype a b solves a real generalized symmetric definite eigenproblem:
sygv_opt_lwork [Slap_S]
sygv_opt_lwork ?vectors ?up ?itype a b computes the optimum length of workspace work for sbevr routine.
sygv_opt_lwork [Slap_D]
sygv_opt_lwork ?vectors ?up ?itype a b computes the optimum length of workspace work for sbevr routine.
symm [Slap_C]
symm ~side ?up ?beta ?c ?alpha a b executes
symm [Slap_Z]
symm ~side ?up ?beta ?c ?alpha a b executes
symm [Slap_S]
symm ~side ?up ?beta ?c ?alpha a b executes
symm [Slap_D]
symm ~side ?up ?beta ?c ?alpha a b executes
symm2_trace [Slap_C.Mat]
symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric matrices a and b.
symm2_trace [Slap_Z.Mat]
symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric matrices a and b.
symm2_trace [Slap_S.Mat]
symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric matrices a and b.
symm2_trace [Slap_D.Mat]
symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric matrices a and b.
symv [Slap_C]
symv ?beta ?y ?up ?alpha a x executes y := alpha * a * x + beta * y.
symv [Slap_Z]
symv ?beta ?y ?up ?alpha a x executes y := alpha * a * x + beta * y.
symv [Slap_S]
symv ?beta ?y ?up ?alpha a x executes y := alpha * a * x + beta * y.
symv [Slap_D]
symv ?beta ?y ?up ?alpha a x executes y := alpha * a * x + beta * y.
syr [Slap_S]
syr ?alpha x a computes a := alpha * x * x^T + a with the symmetric matrix a, the vector x and the transposed vector x^T of x.
syr [Slap_D]
syr ?alpha x a computes a := alpha * x * x^T + a with the symmetric matrix a, the vector x and the transposed vector x^T of x.
syr2k [Slap_C]
syr2k ?up ?beta ?c ~trans ?alpha a b computes
syr2k [Slap_Z]
syr2k ?up ?beta ?c ~trans ?alpha a b computes
syr2k [Slap_S]
syr2k ?up ?beta ?c ~trans ?alpha a b computes
syr2k [Slap_D]
syr2k ?up ?beta ?c ~trans ?alpha a b computes
syrk [Slap_C]
syrk ?up ?beta ?c ~trans ?alpha a executes
syrk [Slap_Z]
syrk ?up ?beta ?c ~trans ?alpha a executes
syrk [Slap_S]
syrk ?up ?beta ?c ~trans ?alpha a executes
syrk [Slap_D]
syrk ?up ?beta ?c ~trans ?alpha a executes
syrk_diag [Slap_C.Mat]
syrk_diag ?beta ?y ~transa ?alpha a executes
syrk_diag [Slap_Z.Mat]
syrk_diag ?beta ?y ~transa ?alpha a executes
syrk_diag [Slap_S.Mat]
syrk_diag ?beta ?y ~transa ?alpha a executes
syrk_diag [Slap_D.Mat]
syrk_diag ?beta ?y ~transa ?alpha a executes
syrk_trace [Slap_C.Mat]
syrk_trace a computes the trace of a * a^T or a^T * a.
syrk_trace [Slap_Z.Mat]
syrk_trace a computes the trace of a * a^T or a^T * a.
syrk_trace [Slap_S.Mat]
syrk_trace a computes the trace of a * a^T or a^T * a.
syrk_trace [Slap_D.Mat]
syrk_trace a computes the trace of a * a^T or a^T * a.
sysv [Slap_C]
sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix, each column of matrix b is the r.h.s.
sysv [Slap_Z]
sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix, each column of matrix b is the r.h.s.
sysv [Slap_S]
sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix, each column of matrix b is the r.h.s.
sysv [Slap_D]
sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b where a is a 'n-by-'n symmetric matrix, each column of matrix b is the r.h.s.
sysv_min_lwork [Slap_C]
sysv_min_lwork () computes the minimum length of workspace for sysv routine.
sysv_min_lwork [Slap_Z]
sysv_min_lwork () computes the minimum length of workspace for sysv routine.
sysv_min_lwork [Slap_S]
sysv_min_lwork () computes the minimum length of workspace for sysv routine.
sysv_min_lwork [Slap_D]
sysv_min_lwork () computes the minimum length of workspace for sysv routine.
sysv_opt_lwork [Slap_C]
sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv routine.
sysv_opt_lwork [Slap_Z]
sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv routine.
sysv_opt_lwork [Slap_S]
sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv routine.
sysv_opt_lwork [Slap_D]
sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv routine.
sytrf [Slap_C]
sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytrf [Slap_Z]
sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytrf [Slap_S]
sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytrf [Slap_D]
sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytrf_min_lwork [Slap_C]
sytrf_min_lwork () computes the minimum length of workspace for sytrf routine.
sytrf_min_lwork [Slap_Z]
sytrf_min_lwork () computes the minimum length of workspace for sytrf routine.
sytrf_min_lwork [Slap_S]
sytrf_min_lwork () computes the minimum length of workspace for sytrf routine.
sytrf_min_lwork [Slap_D]
sytrf_min_lwork () computes the minimum length of workspace for sytrf routine.
sytrf_opt_lwork [Slap_C]
sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf routine.
sytrf_opt_lwork [Slap_Z]
sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf routine.
sytrf_opt_lwork [Slap_S]
sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf routine.
sytrf_opt_lwork [Slap_D]
sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf routine.
sytri [Slap_C]
sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytri [Slap_Z]
sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytri [Slap_S]
sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytri [Slap_D]
sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using the Bunch-Kaufman diagonal pivoting method:
sytri_min_lwork [Slap_C]
sytri_min_lwork () computes the minimum length of workspace for sytri routine.
sytri_min_lwork [Slap_Z]
sytri_min_lwork () computes the minimum length of workspace for sytri routine.
sytri_min_lwork [Slap_S]
sytri_min_lwork () computes the minimum length of workspace for sytri routine.
sytri_min_lwork [Slap_D]
sytri_min_lwork () computes the minimum length of workspace for sytri routine.
sytrs [Slap_C]
sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where a is a symmetric matrix, each column of matrix b is the r.h.s.
sytrs [Slap_Z]
sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where a is a symmetric matrix, each column of matrix b is the r.h.s.
sytrs [Slap_S]
sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where a is a symmetric matrix, each column of matrix b is the r.h.s.
sytrs [Slap_D]
sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where a is a symmetric matrix, each column of matrix b is the r.h.s.

T
tbtrs [Slap_C]
tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations OP(A) * x = b where A is a triangular band matrix with kd subdiagonals, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
tbtrs [Slap_Z]
tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations OP(A) * x = b where A is a triangular band matrix with kd subdiagonals, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
tbtrs [Slap_S]
tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations OP(A) * x = b where A is a triangular band matrix with kd subdiagonals, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
tbtrs [Slap_D]
tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations OP(A) * x = b where A is a triangular band matrix with kd subdiagonals, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
ten [Slap_size]
three [Slap_size]
tl [Slap_C.Vec]
tl [Slap_Z.Vec]
tl [Slap_S.Vec]
tl [Slap_D.Vec]
tl [Slap_vec]
tl_dyn [Slap_C.Vec]
tl_dyn [Slap_Z.Vec]
tl_dyn [Slap_S.Vec]
tl_dyn [Slap_D.Vec]
tl_dyn [Slap_vec]
to_array [Slap_C.Mat]
to_array a
to_array [Slap_C.Vec]
to_array x
to_array [Slap_Z.Mat]
to_array a
to_array [Slap_Z.Vec]
to_array x
to_array [Slap_S.Mat]
to_array a
to_array [Slap_S.Vec]
to_array x
to_array [Slap_D.Mat]
to_array a
to_array [Slap_D.Vec]
to_array x
to_array [Slap_mat]
to_array a
to_array [Slap_vec]
to_array x
to_bigarray [Slap_C.Mat]
to_bigarray a
to_bigarray [Slap_C.Vec]
to_bigarray x
to_bigarray [Slap_Z.Mat]
to_bigarray a
to_bigarray [Slap_Z.Vec]
to_bigarray x
to_bigarray [Slap_S.Mat]
to_bigarray a
to_bigarray [Slap_S.Vec]
to_bigarray x
to_bigarray [Slap_D.Mat]
to_bigarray a
to_bigarray [Slap_D.Vec]
to_bigarray x
to_bigarray [Slap_mat]
to_bigarray a
to_bigarray [Slap_vec]
to_bigarray x
to_int [Slap_size]
Return the integer correponding to the given size.
to_list [Slap_C.Mat]
to_list a
to_list [Slap_C.Vec]
to_list x
to_list [Slap_Z.Mat]
to_list a
to_list [Slap_Z.Vec]
to_list x
to_list [Slap_S.Mat]
to_list a
to_list [Slap_S.Vec]
to_list x
to_list [Slap_D.Mat]
to_list a
to_list [Slap_D.Vec]
to_list x
to_list [Slap_mat]
to_list a
to_list [Slap_vec]
to_list x
tpmv [Slap_C]
tpmv ~trans ?diag ?up a x executes x := OP(a) * x where a is a packed triangular matrix.
tpmv [Slap_Z]
tpmv ~trans ?diag ?up a x executes x := OP(a) * x where a is a packed triangular matrix.
tpmv [Slap_S]
tpmv ~trans ?diag ?up a x executes x := OP(a) * x where a is a packed triangular matrix.
tpmv [Slap_D]
tpmv ~trans ?diag ?up a x executes x := OP(a) * x where a is a packed triangular matrix.
tpsv [Slap_C]
tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b where a is a packed triangular matrix.
tpsv [Slap_Z]
tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b where a is a packed triangular matrix.
tpsv [Slap_S]
tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b where a is a packed triangular matrix.
tpsv [Slap_D]
tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b where a is a packed triangular matrix.
trace [Slap_C.Mat]
trace a
trace [Slap_Z.Mat]
trace a
trace [Slap_S.Mat]
trace a
trace [Slap_D.Mat]
trace a
trans [Slap_common]
Transpose of a matrix.
transpose_copy [Slap_C.Mat]
transpose_copy ?b a copies the transpose of a into b.
transpose_copy [Slap_Z.Mat]
transpose_copy ?b a copies the transpose of a into b.
transpose_copy [Slap_S.Mat]
transpose_copy ?b a copies the transpose of a into b.
transpose_copy [Slap_D.Mat]
transpose_copy ?b a copies the transpose of a into b.
trmm [Slap_C]
trmm ~side ?up ~transa ?diag ?alpha ~a b executes
trmm [Slap_Z]
trmm ~side ?up ~transa ?diag ?alpha ~a b executes
trmm [Slap_S]
trmm ~side ?up ~transa ?diag ?alpha ~a b executes
trmm [Slap_D]
trmm ~side ?up ~transa ?diag ?alpha ~a b executes
trmv [Slap_C]
trmv ~trans ?diag ?up a x executes x := OP(a) * x.
trmv [Slap_Z]
trmv ~trans ?diag ?up a x executes x := OP(a) * x.
trmv [Slap_S]
trmv ~trans ?diag ?up a x executes x := OP(a) * x.
trmv [Slap_D]
trmv ~trans ?diag ?up a x executes x := OP(a) * x.
trsm [Slap_C]
trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear equations
trsm [Slap_Z]
trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear equations
trsm [Slap_S]
trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear equations
trsm [Slap_D]
trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear equations
trsv [Slap_C]
trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b.
trsv [Slap_Z]
trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b.
trsv [Slap_S]
trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b.
trsv [Slap_D]
trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b and destructively assigns x to b.
trtri [Slap_C]
trtri ?up ?diag a computes the inverse of triangular matrix a.
trtri [Slap_Z]
trtri ?up ?diag a computes the inverse of triangular matrix a.
trtri [Slap_S]
trtri ?up ?diag a computes the inverse of triangular matrix a.
trtri [Slap_D]
trtri ?up ?diag a computes the inverse of triangular matrix a.
trtrs [Slap_C]
trtrs ?up trans ?diag a b solves systems of linear equations OP(a) * x = b where a is a triangular matrix of order 'n, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
trtrs [Slap_Z]
trtrs ?up trans ?diag a b solves systems of linear equations OP(a) * x = b where a is a triangular matrix of order 'n, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
trtrs [Slap_S]
trtrs ?up trans ?diag a b solves systems of linear equations OP(a) * x = b where a is a triangular matrix of order 'n, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
trtrs [Slap_D]
trtrs ?up trans ?diag a b solves systems of linear equations OP(a) * x = b where a is a triangular matrix of order 'n, each column of matrix b is the r.h.s vector, and each column of matrix x is the corresponding solution.
two [Slap_size]

U
ungeband [Slap_C.Mat]
ungeband m kl ku ?a b converts matrix b stored in band storage into a matrix stored in the normal order.
ungeband [Slap_Z.Mat]
ungeband m kl ku ?a b converts matrix b stored in band storage into a matrix stored in the normal order.
ungeband [Slap_S.Mat]
ungeband m kl ku ?a b converts matrix b stored in band storage into a matrix stored in the normal order.
ungeband [Slap_D.Mat]
ungeband m kl ku ?a b converts matrix b stored in band storage into a matrix stored in the normal order.
ungeband [Slap_mat]
ungeband m kl ku ?a b converts matrix b stored in band storage into a matrix stored in the normal order.
unit [Slap_common]
A matrix is unit triagular.
unluband [Slap_C.Mat]
unluband m kl ku ?a ab converts matrix ab stored in band storage for LU factorization into a matrix stored in the normal order.
unluband [Slap_Z.Mat]
unluband m kl ku ?a ab converts matrix ab stored in band storage for LU factorization into a matrix stored in the normal order.
unluband [Slap_S.Mat]
unluband m kl ku ?a ab converts matrix ab stored in band storage for LU factorization into a matrix stored in the normal order.
unluband [Slap_D.Mat]
unluband m kl ku ?a ab converts matrix ab stored in band storage for LU factorization into a matrix stored in the normal order.
unluband [Slap_mat]
unluband m kl ku ?a ab converts matrix ab stored in band storage for LU factorization into a matrix stored in the normal order.
unpacked [Slap_C.Mat]
unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix from packed-storage-format vector x.
unpacked [Slap_Z.Mat]
unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix from packed-storage-format vector x.
unpacked [Slap_S.Mat]
unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix from packed-storage-format vector x.
unpacked [Slap_D.Mat]
unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix from packed-storage-format vector x.
unpacked [Slap_mat]
unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix from x stored in packed storage.
unpacked [Slap_size]
unpacked n computes the inverse of the packed storage size, i.e., unpacked (packed n) = n for all n.
unsafe_get [Slap_C.Mat]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_C.Vec]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_Z.Mat]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_Z.Vec]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_S.Mat]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_S.Vec]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_D.Mat]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_D.Vec]
Like get_dyn, but size checking is not always performed.
unsafe_get [Slap_mat]
Like Slap_mat.get_dyn, but size checking is not always performed.
unsafe_get [Slap_vec]
Like Slap_vec.get_dyn, but size checking is not always performed.
unsafe_of_array [Slap_C.Mat]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_C.Vec]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_Z.Mat]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_Z.Vec]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_S.Mat]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_S.Vec]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_D.Mat]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_D.Vec]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_mat]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_array [Slap_vec]
Like of_array_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_C.Mat]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_C.Vec]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_Z.Mat]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_Z.Vec]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_S.Mat]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_S.Vec]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_D.Mat]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_D.Vec]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_mat]
Like of_bigarray_dyn, but size checking is not always performed.
unsafe_of_bigarray [Slap_vec]
Like unsafe_of_bigarray, but size checking is not always performed.
unsafe_of_int [Slap_size]
Like of_int_dyn, but dynamic size checking is not performed.
unsafe_of_list [Slap_C.Mat]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_C.Vec]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_Z.Mat]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_Z.Vec]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_S.Mat]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_S.Vec]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_D.Mat]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_D.Vec]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_mat]
Like of_list_dyn, but size checking is not always performed.
unsafe_of_list [Slap_vec]
Like of_list_dyn, but size checking is not always performed.
unsafe_set [Slap_C.Mat]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_C.Vec]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_Z.Mat]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_Z.Vec]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_S.Mat]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_S.Vec]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_D.Mat]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_D.Vec]
Like set_dyn, but size checking is not always performed.
unsafe_set [Slap_mat]
Like Slap_mat.set_dyn, but size checking is not always performed.
unsafe_set [Slap_vec]
Like Slap_vec.set_dyn, but size checking is not always performed.
unsyband [Slap_C.Mat]
unsyband kd ?a b converts matrix b stored in symmetric or Hermitian band storage into a matrix stored in the normal order.
unsyband [Slap_Z.Mat]
unsyband kd ?a b converts matrix b stored in symmetric or Hermitian band storage into a matrix stored in the normal order.
unsyband [Slap_S.Mat]
unsyband kd ?a b converts matrix b stored in symmetric or Hermitian band storage into a matrix stored in the normal order.
unsyband [Slap_D.Mat]
unsyband kd ?a b converts matrix b stored in symmetric or Hermitian band storage into a matrix stored in the normal order.
unsyband [Slap_mat]
unsyband kd ?a b converts matrix b stored in symmetric or Hermitian band storage into a matrix stored in the normal order.
upper [Slap_common]
Using the upper triangular (or trapezoidal) part of a matrix.
upper_lower [Slap_common]
Using both of the upper and lower triangular parts (i.e., all elements) of a matrix.

V
value [Slap_C.Mat.DSCMAT]
A dynamically-sized discrete matrix with type like exists m, n. (m, n, dsc) vec.
value [Slap_C.Mat.CNTMAT]
A dynamically-sized contiguous matrix with type like exists m, n. (m, n, 'cnt) mat.
value [Slap_C.Vec.DSCVEC]
A dynamically-sized discrete vector with type like exists n. (n, dsc) vec.
value [Slap_C.Vec.CNTVEC]
A dynamically-sized contiguous vector with type like exists n. (n, 'cnt) vec.
value [Slap_Z.Mat.DSCMAT]
A dynamically-sized discrete matrix with type like exists m, n. (m, n, dsc) vec.
value [Slap_Z.Mat.CNTMAT]
A dynamically-sized contiguous matrix with type like exists m, n. (m, n, 'cnt) mat.
value [Slap_Z.Vec.DSCVEC]
A dynamically-sized discrete vector with type like exists n. (n, dsc) vec.
value [Slap_Z.Vec.CNTVEC]
A dynamically-sized contiguous vector with type like exists n. (n, 'cnt) vec.
value [Slap_S.SYEVR_RESULT]
value [Slap_S.Mat.DSCMAT]
A dynamically-sized discrete matrix with type like exists m, n. (m, n, dsc) vec.
value [Slap_S.Mat.CNTMAT]
A dynamically-sized contiguous matrix with type like exists m, n. (m, n, 'cnt) mat.
value [Slap_S.Vec.DSCVEC]
A dynamically-sized discrete vector with type like exists n. (n, dsc) vec.
value [Slap_S.Vec.CNTVEC]
A dynamically-sized contiguous vector with type like exists n. (n, 'cnt) vec.
value [Slap_D.SYEVR_RESULT]
value [Slap_D.Mat.DSCMAT]
A dynamically-sized discrete matrix with type like exists m, n. (m, n, dsc) vec.
value [Slap_D.Mat.CNTMAT]
A dynamically-sized contiguous matrix with type like exists m, n. (m, n, 'cnt) mat.
value [Slap_D.Vec.DSCVEC]
A dynamically-sized discrete vector with type like exists n. (n, dsc) vec.
value [Slap_D.Vec.CNTVEC]
A dynamically-sized contiguous vector with type like exists n. (n, 'cnt) vec.
value [Slap_size.SIZE]
A dynamically-decided size with type like exists n. n Size.t.
version [Slap_version]
The version number of SLAP: "major.minor.micro"
vertical_default [Slap_io.Context]
- If Some n, the first n rows and the last n rows of a table are printed.

Z
zero [Slap_size]
zmxy [Slap_C.Vec]
zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
zmxy [Slap_Z.Vec]
zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
zmxy [Slap_S.Vec]
zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
zmxy [Slap_D.Vec]
zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
zpxy [Slap_C.Vec]
zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
zpxy [Slap_Z.Vec]
zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
zpxy [Slap_S.Vec]
zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
zpxy [Slap_D.Vec]
zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn) returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).