| __alloc_work [Slap_vec] | |
| __expose [Slap_mat] | |
| __expose [Slap_vec] | |
| __expose [Slap_size] | |
| __unexpose [Slap_mat] | |
| __unexpose [Slap_vec] | |
| __unexpose [Slap_size] | |
| __unexpose_norm [Slap_common] | |
| __unexpose_side [Slap_common] | |
| __unexpose_svd_job [Slap_common] | |
| __unexpose_uplo [Slap_common] | |
| __unexpose_with_ofs [Slap_vec] | |
A | |
| add [Slap_C.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn).
|
| add [Slap_Z.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn).
|
| add [Slap_S.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn).
|
| add [Slap_D.Vec] | add ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 + y1, x2 + y2, ..., xn + yn).
|
| add [Slap_size] | add m n
|
| add_const [Slap_C.Mat] | add_const c ?b a adds constant value c to all elements in a.
|
| add_const [Slap_C.Vec] | add_const c ?y x adds constant value c to all elements in vector x.
|
| add_const [Slap_Z.Mat] | add_const c ?b a adds constant value c to all elements in a.
|
| add_const [Slap_Z.Vec] | add_const c ?y x adds constant value c to all elements in vector x.
|
| add_const [Slap_S.Mat] | add_const c ?b a adds constant value c to all elements in a.
|
| add_const [Slap_S.Vec] | add_const c ?y x adds constant value c to all elements in vector x.
|
| add_const [Slap_D.Mat] | add_const c ?b a adds constant value c to all elements in a.
|
| add_const [Slap_D.Vec] | add_const c ?y x adds constant value c to all elements in vector x.
|
| amax [Slap_C] | amax x finds the maximum value of all elements in x.
|
| amax [Slap_Z] | amax x finds the maximum value of all elements in x.
|
| amax [Slap_S] | amax x finds the maximum value of all elements in x.
|
| amax [Slap_D] | amax x finds the maximum value of all elements in x.
|
| append [Slap_C.Vec] |
Concatenate two vectors.
|
| append [Slap_Z.Vec] |
Concatenate two vectors.
|
| append [Slap_S.Vec] |
Concatenate two vectors.
|
| append [Slap_D.Vec] |
Concatenate two vectors.
|
| append [Slap_vec] |
Concatenate two vectors.
|
| as_vec [Slap_C.Mat] | as_vec a
|
| as_vec [Slap_Z.Mat] | as_vec a
|
| as_vec [Slap_S.Mat] | as_vec a
|
| as_vec [Slap_D.Mat] | as_vec a
|
| as_vec [Slap_mat] | as_vec a
|
| asum [Slap_S] | asum x
|
| asum [Slap_D] | asum x
|
| axpy [Slap_C.Mat] | axpy ?alpha x y computes y := alpha * x + y.
|
| axpy [Slap_C] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha,
and vectors x and y.
|
| axpy [Slap_Z.Mat] | axpy ?alpha x y computes y := alpha * x + y.
|
| axpy [Slap_Z] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha,
and vectors x and y.
|
| axpy [Slap_S.Mat] | axpy ?alpha x y computes y := alpha * x + y.
|
| axpy [Slap_S] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha,
and vectors x and y.
|
| axpy [Slap_D.Mat] | axpy ?alpha x y computes y := alpha * x + y.
|
| axpy [Slap_D] | axpy ?alpha x y executes y := alpha * x + y with scalar value alpha,
and vectors x and y.
|
C | |
| char_of_diag [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
| char_of_norm [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
| char_of_side [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
| char_of_svd_job [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
| char_of_trans [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
| char_of_uplo [Slap_common] |
Return a character of a flag (for BLAS/LAPACK).
|
| check_cnt [Slap_mat] | |
| check_cnt [Slap_vec] | |
| check_side_dim [Slap_common] |
Auxiliary function (used internally)
|
| cnt [Slap_C.Mat] |
Recover polymorphism of the fifth type parameter.
|
| cnt [Slap_C.Vec] |
Recover polymorphism of the fourth type parameter.
|
| cnt [Slap_Z.Mat] |
Recover polymorphism of the fifth type parameter.
|
| cnt [Slap_Z.Vec] |
Recover polymorphism of the fourth type parameter.
|
| cnt [Slap_S.Mat] |
Recover polymorphism of the fifth type parameter.
|
| cnt [Slap_S.Vec] |
Recover polymorphism of the fourth type parameter.
|
| cnt [Slap_D.Mat] |
Recover polymorphism of the fifth type parameter.
|
| cnt [Slap_D.Vec] |
Recover polymorphism of the fourth type parameter.
|
| cnt [Slap_mat] |
Recover polymorphism of the fifth type parameter.
|
| cnt [Slap_vec] |
Recover polymorphism of the fourth type parameter.
|
| col_dyn [Slap_C.Mat] | col_dyn a i
|
| col_dyn [Slap_Z.Mat] | col_dyn a i
|
| col_dyn [Slap_S.Mat] | col_dyn a i
|
| col_dyn [Slap_D.Mat] | col_dyn a i
|
| col_dyn [Slap_mat] | col_dyn a i
|
| conjtr [Slap_common] |
Conjugate transpose of a matrix.
|
| cons [Slap_C.Vec] | cons ?y e x adds element e at the beginning of vector x, and copies
it into y.
|
| cons [Slap_Z.Vec] | cons ?y e x adds element e at the beginning of vector x, and copies
it into y.
|
| cons [Slap_S.Vec] | cons ?y e x adds element e at the beginning of vector x, and copies
it into y.
|
| cons [Slap_D.Vec] | cons ?y e x adds element e at the beginning of vector x, and copies
it into y.
|
| cons [Slap_vec] | cons ?y e x adds element e at the beginning of vector x, and copies
it into y.
|
| copy [Slap_C.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy.
|
| copy [Slap_C.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy.
|
| copy [Slap_C] | copy ?y x copies x into y.
|
| copy [Slap_Z.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy.
|
| copy [Slap_Z.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy.
|
| copy [Slap_Z] | copy ?y x copies x into y.
|
| copy [Slap_S.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy.
|
| copy [Slap_S.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy.
|
| copy [Slap_S] | copy ?y x copies x into y.
|
| copy [Slap_D.Mat] | copy ?uplo ?b a copies the matrix a into the matrix b with
the LAPACK function lacpy.
|
| copy [Slap_D.Vec] | copy ?y x copies the vector x to the vector y with the BLAS-1
function [sdcz]copy.
|
| copy [Slap_D] | copy ?y x copies x into y.
|
| copy [Slap_mat] | copy ?b a copies the matrix a into the matrix b.
|
| copy [Slap_vec] | copy ?y x copies the vector x to the vector y.
|
| copy_diag [Slap_C.Mat] | copy_diag a is Vec.copy (Mat.diag a).
|
| copy_diag [Slap_Z.Mat] | copy_diag a is Vec.copy (Mat.diag a).
|
| copy_diag [Slap_S.Mat] | copy_diag a is Vec.copy (Mat.diag a).
|
| copy_diag [Slap_D.Mat] | copy_diag a is Vec.copy (Mat.diag a).
|
| copy_diag_rect [Slap_C.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a).
|
| copy_diag_rect [Slap_Z.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a).
|
| copy_diag_rect [Slap_S.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a).
|
| copy_diag_rect [Slap_D.Mat] | copy_diag_rect a is Vec.copy (Mat.diag_rect a).
|
| copy_row_dyn [Slap_C.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
|
| copy_row_dyn [Slap_Z.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
|
| copy_row_dyn [Slap_S.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
|
| copy_row_dyn [Slap_D.Mat] | copy_row_dyn a i is Vec.copy (Mat.row_dyn a i).
|
| cos [Slap_S.Vec] | cos ?y (x1, x2, ..., xn) returns (cos x1, cos x2, ..., cos xn).
|
| cos [Slap_D.Vec] | cos ?y (x1, x2, ..., xn) returns (cos x1, cos x2, ..., cos xn).
|
| create [Slap_C.Mat] | create m n
|
| create [Slap_C.Vec] | create n
|
| create [Slap_Z.Mat] | create m n
|
| create [Slap_Z.Vec] | create n
|
| create [Slap_S.Mat] | create m n
|
| create [Slap_S.Vec] | create n
|
| create [Slap_D.Mat] | create m n
|
| create [Slap_D.Vec] | create n
|
| create [Slap_io.Context] | |
| create [Slap_mat] | create kind m n
|
| create [Slap_vec] | create kind n
|
| create_array2 [Slap_mat] | |
| create_int32_vec [Slap_common] | |
| create_int_vec [Slap_common] | |
D | |
| detri [Slap_C.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
| detri [Slap_Z.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
| detri [Slap_S.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
| detri [Slap_D.Mat] | detri ?up a converts triangular matrix a to a symmetric matrix, i.e.,
copies the upper or lower triangular part of a into another part.
|
| diag [Slap_C.Mat] | diag a
|
| diag [Slap_Z.Mat] | diag a
|
| diag [Slap_S.Mat] | diag a
|
| diag [Slap_D.Mat] | diag a
|
| diag [Slap_mat] | diag a
|
| diag_rect [Slap_C.Mat] | diag_rect a
|
| diag_rect [Slap_Z.Mat] | diag_rect a
|
| diag_rect [Slap_S.Mat] | diag_rect a
|
| diag_rect [Slap_D.Mat] | diag_rect a
|
| diag_rect [Slap_mat] | diag_rect a
|
| dim [Slap_C.Mat] | dim a is (dim1 a, dim2 a).
|
| dim [Slap_C.Vec] | dim x
|
| dim [Slap_Z.Mat] | dim a is (dim1 a, dim2 a).
|
| dim [Slap_Z.Vec] | dim x
|
| dim [Slap_S.Mat] | dim a is (dim1 a, dim2 a).
|
| dim [Slap_S.Vec] | dim x
|
| dim [Slap_D.Mat] | dim a is (dim1 a, dim2 a).
|
| dim [Slap_D.Vec] | dim x
|
| dim [Slap_mat] | dim a is (dim1 a, dim2 a).
|
| dim [Slap_vec] | dim x
|
| dim1 [Slap_C.Mat] | dim1 a
|
| dim1 [Slap_Z.Mat] | dim1 a
|
| dim1 [Slap_S.Mat] | dim1 a
|
| dim1 [Slap_D.Mat] | dim1 a
|
| dim1 [Slap_mat] | dim1 a
|
| dim2 [Slap_C.Mat] | dim1 a
|
| dim2 [Slap_Z.Mat] | dim1 a
|
| dim2 [Slap_S.Mat] | dim1 a
|
| dim2 [Slap_D.Mat] | dim1 a
|
| dim2 [Slap_mat] | dim1 a
|
| dim_array_array [Slap_mat] | dim_array_array aa returns Some (n_rows, n_cols) with the number of rows
n_rows and the number of columns n_cols of the given array of arrays.
|
| dim_list_list [Slap_mat] | dim_list list ll returns Some (n_rows, n_cols) with the number of rows
n_rows and the number of columns n_cols of the given list of lists.
|
| div [Slap_C.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn).
|
| div [Slap_Z.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn).
|
| div [Slap_S.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn).
|
| div [Slap_D.Vec] | div ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 / y1, x2 / y2, ..., xn / yn).
|
| div_dyn [Slap_size] | div_dyn m n
|
| dot [Slap_S] | dot x y
|
| dot [Slap_D] | dot x y
|
| dotc [Slap_C] | dotc x y computes x^H y.
|
| dotc [Slap_Z] | dotc x y computes x^H y.
|
| dotu [Slap_C] | dotc x y computes x^T y.
|
| dotu [Slap_Z] | dotc x y computes x^T y.
|
E | |
| eight [Slap_size] | |
| ellipsis_default [Slap_io.Context] |
default =
"..."
|
| empty [Slap_C.Mat] |
An empty matrix.
|
| empty [Slap_C.Vec] |
An empty vector.
|
| empty [Slap_Z.Mat] |
An empty matrix.
|
| empty [Slap_Z.Vec] |
An empty vector.
|
| empty [Slap_S.Mat] |
An empty matrix.
|
| empty [Slap_S.Vec] |
An empty vector.
|
| empty [Slap_D.Mat] |
An empty matrix.
|
| empty [Slap_D.Vec] |
An empty vector.
|
| exists [Slap_C.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
|
| exists [Slap_Z.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
|
| exists [Slap_S.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
|
| exists [Slap_D.Vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
|
| exists [Slap_vec] | exists p (x1, x2, ..., xn) is (p x1) || (p x2) || ... || (p xn).
|
| exists2 [Slap_C.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn).
|
| exists2 [Slap_Z.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn).
|
| exists2 [Slap_S.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn).
|
| exists2 [Slap_D.Vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn).
|
| exists2 [Slap_vec] | exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) || (p x2 y2) || ... || (p xn yn).
|
| exp [Slap_S.Vec] | exp ?y (x1, x2, ..., xn) returns (exp x1, exp x2, ..., exp xn).
|
| exp [Slap_D.Vec] | exp ?y (x1, x2, ..., xn) returns (exp x1, exp x2, ..., exp xn).
|
F | |
| failwithf [Slap_misc] | failwith + printf-style format
|
| fill [Slap_C.Mat] |
Fill the given matrix with the given value.
|
| fill [Slap_C.Vec] |
Fill the given vector with the given value.
|
| fill [Slap_Z.Mat] |
Fill the given matrix with the given value.
|
| fill [Slap_Z.Vec] |
Fill the given vector with the given value.
|
| fill [Slap_S.Mat] |
Fill the given matrix with the given value.
|
| fill [Slap_S.Vec] |
Fill the given vector with the given value.
|
| fill [Slap_D.Mat] |
Fill the given matrix with the given value.
|
| fill [Slap_D.Vec] |
Fill the given vector with the given value.
|
| fill [Slap_mat] |
Fill the given matrix with the given value.
|
| fill [Slap_vec] |
Fill the given vector with the given value.
|
| five [Slap_size] | |
| fold_bottom [Slap_C.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottom [Slap_Z.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottom [Slap_S.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottom [Slap_D.Mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottom [Slap_mat] | fold_bottom f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottomi [Slap_C.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottomi [Slap_Z.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottomi [Slap_S.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottomi [Slap_D.Mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_bottomi [Slap_mat] | fold_bottomi f a init folds row vectors of matrix a by f in the
order bottom to top.
|
| fold_left [Slap_C.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_left [Slap_C.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn.
|
| fold_left [Slap_Z.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_left [Slap_Z.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn.
|
| fold_left [Slap_S.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_left [Slap_S.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn.
|
| fold_left [Slap_D.Mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_left [Slap_D.Vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn.
|
| fold_left [Slap_mat] | fold_left f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_left [Slap_vec] | fold_left f init (x1, x2, ..., xn) is
f (... (f (f init x1) x2) ...) xn.
|
| fold_left [Slap_size] | fold_left f init n is f (... (f (f init 1) 2) ...) n.
|
| fold_left2 [Slap_C.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn.
|
| fold_left2 [Slap_Z.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn.
|
| fold_left2 [Slap_S.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn.
|
| fold_left2 [Slap_D.Vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn.
|
| fold_left2 [Slap_vec] | fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f (... (f (f init x1 y1) x2 y2) ...) xn yn.
|
| fold_left3 [Slap_C.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
|
| fold_left3 [Slap_Z.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
|
| fold_left3 [Slap_S.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
|
| fold_left3 [Slap_D.Vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
|
| fold_left3 [Slap_vec] | fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn.
|
| fold_lefti [Slap_C.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_lefti [Slap_C.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
|
| fold_lefti [Slap_Z.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_lefti [Slap_Z.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
|
| fold_lefti [Slap_S.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_lefti [Slap_S.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
|
| fold_lefti [Slap_D.Mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_lefti [Slap_D.Vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
|
| fold_lefti [Slap_mat] | fold_lefti f init a folds column vectors of matrix a by f in the order
left to right.
|
| fold_lefti [Slap_vec] | fold_lefti f init (x1, x2, ..., xn) is
f n (... (f 2 (f 1 init x1) x2) ...) xn with the vector's dimension n.
|
| fold_lefti [Slap_size] | fold_lefti f init n is f (... (f (f init 1) 2) ...) (to_int n).
|
| fold_lefti2 [Slap_C.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n.
|
| fold_lefti2 [Slap_Z.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n.
|
| fold_lefti2 [Slap_S.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n.
|
| fold_lefti2 [Slap_D.Vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n.
|
| fold_lefti2 [Slap_vec] | fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn) is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn with the vectors'
dimension n.
|
| fold_lefti3 [Slap_C.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n.
|
| fold_lefti3 [Slap_Z.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n.
|
| fold_lefti3 [Slap_S.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n.
|
| fold_lefti3 [Slap_D.Vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n.
|
| fold_lefti3 [Slap_vec] | fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn with the
vectors' dimension n.
|
| fold_right [Slap_C.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_right [Slap_C.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)).
|
| fold_right [Slap_Z.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_right [Slap_Z.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)).
|
| fold_right [Slap_S.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_right [Slap_S.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)).
|
| fold_right [Slap_D.Mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_right [Slap_D.Vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)).
|
| fold_right [Slap_mat] | fold_right f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_right [Slap_vec] | fold_right f (x1, x2, ..., xn) init is
f x1 (f x2 (... (f xn init) ...)).
|
| fold_right [Slap_size] | fold_right f n init is f 1 (f 2 (... (f n init) ...)).
|
| fold_right2 [Slap_C.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
|
| fold_right2 [Slap_Z.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
|
| fold_right2 [Slap_S.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
|
| fold_right2 [Slap_D.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
|
| fold_right2 [Slap_vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f x1 y1 (f x2 y2 (... (f xn yn init) ...)).
|
| fold_right3 [Slap_C.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
|
| fold_right3 [Slap_Z.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
|
| fold_right3 [Slap_S.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
|
| fold_right3 [Slap_D.Vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
|
| fold_right3 [Slap_vec] | fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...)).
|
| fold_righti [Slap_C.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_righti [Slap_C.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
|
| fold_righti [Slap_Z.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_righti [Slap_Z.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
|
| fold_righti [Slap_S.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_righti [Slap_S.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
|
| fold_righti [Slap_D.Mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_righti [Slap_D.Vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
|
| fold_righti [Slap_mat] | fold_righti f a init folds column vectors of matrix a by f in the
order right to left.
|
| fold_righti [Slap_vec] | fold_righti f (x1, x2, ..., xn) init is
f 1 x1 (f 2 x2 (... (f n xn init) ...)) with the vector's dimension n.
|
| fold_righti [Slap_size] | fold_righti f n init is f 1 (f 2 (... (f (to_int n) init) ...)).
|
| fold_righti2 [Slap_C.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n.
|
| fold_righti2 [Slap_Z.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n.
|
| fold_righti2 [Slap_S.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n.
|
| fold_righti2 [Slap_D.Vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n.
|
| fold_righti2 [Slap_vec] | fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...)) with the vectors'
dimension n.
|
| fold_righti3 [Slap_C.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n.
|
| fold_righti3 [Slap_Z.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n.
|
| fold_righti3 [Slap_S.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n.
|
| fold_righti3 [Slap_D.Vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n.
|
| fold_righti3 [Slap_vec] | fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n.
|
| fold_top [Slap_C.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_top [Slap_Z.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_top [Slap_S.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_top [Slap_D.Mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_top [Slap_mat] | fold_top f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_topi [Slap_C.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_topi [Slap_Z.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_topi [Slap_S.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_topi [Slap_D.Mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| fold_topi [Slap_mat] | fold_topi f init a folds row vectors of matrix a by f in the order
top to bottom.
|
| for_all [Slap_C.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
|
| for_all [Slap_Z.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
|
| for_all [Slap_S.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
|
| for_all [Slap_D.Vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
|
| for_all [Slap_vec] | for_all p (x1, x2, ..., xn) is (p x1) && (p x2) && ... && (p xn).
|
| for_all2 [Slap_C.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn).
|
| for_all2 [Slap_Z.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn).
|
| for_all2 [Slap_S.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn).
|
| for_all2 [Slap_D.Vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn).
|
| for_all2 [Slap_vec] | for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn) is
(p x1 y1) && (p x2 y2) && ... && (p xn yn).
|
| four [Slap_size] | |
G | |
| gbmv [Slap_C] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
| gbmv [Slap_Z] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
| gbmv [Slap_S] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
| gbmv [Slap_D] | gbmv ~m ?beta ?y ~trans ?alpha a kl ku x computes
y := alpha * OP(a) * x + beta * y where a is a band matrix stored in
band storage.
|
| gbsv [Slap_C] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n-by-'n band matrix, each column of matrix B is the
r.h.s.
|
| gbsv [Slap_Z] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n-by-'n band matrix, each column of matrix B is the
r.h.s.
|
| gbsv [Slap_S] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n-by-'n band matrix, each column of matrix B is the
r.h.s.
|
| gbsv [Slap_D] | gbsv ?ipiv ab kl ku b solves a system of linear equations A * X = B
where A is a 'n-by-'n band matrix, each column of matrix B is the
r.h.s.
|
| geband_dyn [Slap_C.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
| geband_dyn [Slap_Z.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
| geband_dyn [Slap_S.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
| geband_dyn [Slap_D.Mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
| geband_dyn [Slap_mat] | geband_dyn kl ku ?b a converts matrix a into a matrix stored in band
storage.
|
| geband_dyn [Slap_size] | geband_dyn m n kl ku computs the band storage size of m-by-n band
matrices with kl subdiagonals and ku superdiagonals.
|
| gecon [Slap_S] | gecon ?norm ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of general matrix a.
|
| gecon [Slap_D] | gecon ?norm ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of general matrix a.
|
| gecon_min_liwork [Slap_S] | gecon_min_liwork n computes the minimum length of workspace iwork for
gecon routine.
|
| gecon_min_liwork [Slap_D] | gecon_min_liwork n computes the minimum length of workspace iwork for
gecon routine.
|
| gecon_min_lwork [Slap_S] | gecon_min_lwork n computes the minimum length of workspace work for
gecon routine.
|
| gecon_min_lwork [Slap_D] | gecon_min_lwork n computes the minimum length of workspace work for
gecon routine.
|
| geev [Slap_S] | geev ?work ?vl ?vr ?wr ?wi a computes the eigenvalues and the left and
right eigenvectors of 'n-by-'n nonsymmetric matrix a:
|
| geev [Slap_D] | geev ?work ?vl ?vr ?wr ?wi a computes the eigenvalues and the left and
right eigenvectors of 'n-by-'n nonsymmetric matrix a:
|
| geev_min_lwork [Slap_S] | geev_min_lwork ?vectors n computes the minimum length of workspace for
geev routine.
|
| geev_min_lwork [Slap_D] | geev_min_lwork ?vectors n computes the minimum length of workspace for
geev routine.
|
| geev_opt_lwork [Slap_S] | geev_opt_lwork ?vl ?vr ?wr ?vi a computes the optimum length of workspace
for geev routine.
|
| geev_opt_lwork [Slap_D] | geev_opt_lwork ?vl ?vr ?wr ?vi a computes the optimum length of workspace
for geev routine.
|
| gels [Slap_C] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
| gels [Slap_Z] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
| gels [Slap_S] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
| gels [Slap_D] | gels ?work ~trans a b solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
|
| gels_min_lwork [Slap_C] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
| gels_min_lwork [Slap_Z] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
| gels_min_lwork [Slap_S] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
| gels_min_lwork [Slap_D] | gels_min_lwork ~n computes the minimum length of workspace for gels
routine.
|
| gels_opt_lwork [Slap_C] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
| gels_opt_lwork [Slap_Z] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
| gels_opt_lwork [Slap_S] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
| gels_opt_lwork [Slap_D] | gels_opt_lwork ~trans a b computes the optimum length of workspace for
gels routine.
|
| gelsd [Slap_S] | gelsd a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||) using the singular
value decomposition (SVD) of a and a divide and conquer method.
|
| gelsd [Slap_D] | gelsd a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||) using the singular
value decomposition (SVD) of a and a divide and conquer method.
|
| gelsd_min_iwork [Slap_S] | gelsd_min_iwork ~m ~n ~nrhs computes the minimum length of workspace
iwork for gelsd routine.
|
| gelsd_min_iwork [Slap_D] | gelsd_min_iwork ~m ~n ~nrhs computes the minimum length of workspace
iwork for gelsd routine.
|
| gelsd_min_lwork [Slap_S] | gelsd_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsd routine.
|
| gelsd_min_lwork [Slap_D] | gelsd_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsd routine.
|
| gelsd_opt_lwork [Slap_S] | gelsd_opt_lwork a b computes the optimum length of workspace for
gelsd routine.
|
| gelsd_opt_lwork [Slap_D] | gelsd_opt_lwork a b computes the optimum length of workspace for
gelsd routine.
|
| gelss [Slap_S] | gelss a ?rcond ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||) using the singular
value decomposition (SVD) of a.
|
| gelss [Slap_D] | gelss a ?rcond ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||) using the singular
value decomposition (SVD) of a.
|
| gelss_min_lwork [Slap_S] | gelss_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelss routine.
|
| gelss_min_lwork [Slap_D] | gelss_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelss routine.
|
| gelss_opt_lwork [Slap_S] | gelss_min_lwork a b computes the optimum length of workspace for
gelss routine.
|
| gelss_opt_lwork [Slap_D] | gelss_min_lwork a b computes the optimum length of workspace for
gelss routine.
|
| gelsy [Slap_S] | gelsy a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||) using a complete
orthogonal factorization of a.
|
| gelsy [Slap_D] | gelsy a ?rcond ?jpvt ?work b computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||) using a complete
orthogonal factorization of a.
|
| gelsy_min_lwork [Slap_S] | gelsy_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsy routine.
|
| gelsy_min_lwork [Slap_D] | gelsy_min_lwork ~m ~n ~nrhs computes the minimum length of workspace for
gelsy routine.
|
| gelsy_opt_lwork [Slap_S] | gelsy_opt_lwork a b computes the optimum length of workspace for
gelsy routine.
|
| gelsy_opt_lwork [Slap_D] | gelsy_opt_lwork a b computes the optimum length of workspace for
gelsy routine.
|
| gemm [Slap_C] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c.
|
| gemm [Slap_Z] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c.
|
| gemm [Slap_S] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c.
|
| gemm [Slap_D] | gemm ?beta ?c ~transa ?alpha a ~transb b executes
c := alpha * OP(a) * OP(b) + beta * c.
|
| gemm_diag [Slap_C.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x, and
OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H
(the conjugate transpose of x).
|
| gemm_diag [Slap_Z.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x, and
OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H
(the conjugate transpose of x).
|
| gemm_diag [Slap_S.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x, and
OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H
(the conjugate transpose of x).
|
| gemm_diag [Slap_D.Mat] | gemm_diag ?beta ?y ~transa ?alpha a ~transb b executes
y := DIAG(alpha * OP(a) * OP(b)) + beta * y where
DIAG(x) is the vector of the diagonal elements in matrix x, and
OP(x) is one of OP(x) = x, OP(x) = x^T, or OP(x) = x^H
(the conjugate transpose of x).
|
| gemm_trace [Slap_C.Mat] | gemm_trace ~transa a ~transb b
|
| gemm_trace [Slap_Z.Mat] | gemm_trace ~transa a ~transb b
|
| gemm_trace [Slap_S.Mat] | gemm_trace ~transa a ~transb b
|
| gemm_trace [Slap_D.Mat] | gemm_trace ~transa a ~transb b
|
| gemv [Slap_C] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y.
|
| gemv [Slap_Z] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y.
|
| gemv [Slap_S] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y.
|
| gemv [Slap_D] | gemv ?beta ?y ~trans ?alpha a x executes
y := alpha * OP(a) * x + beta * y.
|
| geqrf [Slap_C] | geqrf ?work ?tau a computes the QR factorization of general matrix a:
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
| geqrf [Slap_Z] | geqrf ?work ?tau a computes the QR factorization of general matrix a:
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
| geqrf [Slap_S] | geqrf ?work ?tau a computes the QR factorization of general matrix a:
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
| geqrf [Slap_D] | geqrf ?work ?tau a computes the QR factorization of general matrix a:
a = Q * R where Q is an orthogonal (unitary) matrix and R is an
upper triangular matrix.
|
| geqrf_min_lwork [Slap_C] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
| geqrf_min_lwork [Slap_Z] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
| geqrf_min_lwork [Slap_S] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
| geqrf_min_lwork [Slap_D] | geqrf_min_lwork ~n computes the minimum length of workspace for geqrf
routine.
|
| geqrf_opt_lwork [Slap_C] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
| geqrf_opt_lwork [Slap_Z] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
| geqrf_opt_lwork [Slap_S] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
| geqrf_opt_lwork [Slap_D] | geqrf_opt_lwork a computes the optimum length of workspace for geqrf
routine.
|
| ger [Slap_S] | ger ?alpha x y a computes a := alpha * x * y^T + a with
the general matrix a, the vector x and
the transposed vector y^T of y.
|
| ger [Slap_D] | ger ?alpha x y a computes a := alpha * x * y^T + a with
the general matrix a, the vector x and
the transposed vector y^T of y.
|
| gesdd [Slap_S] | gesdd ~jobz ?s ?u ?vt ?work ?iwork a computes the singular value
decomposition (SVD) of general rectangular matrix a using a divide and
conquer method: a = U * D * V^T where
|
| gesdd [Slap_D] | gesdd ~jobz ?s ?u ?vt ?work ?iwork a computes the singular value
decomposition (SVD) of general rectangular matrix a using a divide and
conquer method: a = U * D * V^T where
|
| gesdd_liwork [Slap_S] | gesdd_liwork ~m ~n computes the length of workspace iwork for
gesdd routine.
|
| gesdd_liwork [Slap_D] | gesdd_liwork ~m ~n computes the length of workspace iwork for
gesdd routine.
|
| gesdd_min_lwork [Slap_S] | gesdd_min_lwork ~m ~n computes the minimum length of workspace work for
gesdd routine.
|
| gesdd_min_lwork [Slap_D] | gesdd_min_lwork ~m ~n computes the minimum length of workspace work for
gesdd routine.
|
| gesdd_opt_lwork [Slap_S] | gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a computes the optimum length of
workspace work for gesdd routine.
|
| gesdd_opt_lwork [Slap_D] | gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a computes the optimum length of
workspace work for gesdd routine.
|
| gesv [Slap_C] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
|
| gesv [Slap_Z] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
|
| gesv [Slap_S] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
|
| gesv [Slap_D] | gesv ?ipiv a b solves a system of linear equations a * x = b where a
is a 'n-by-'n general matrix, each column of matrix b is the r.h.s.
|
| gesvd [Slap_S] | gesvd ?jobu ?jobvt ?s ?u ?vt ?work a computes the singular value
decomposition (SVD) of 'm-by-'n general rectangular matrix a:
a = U * D * V^T where
|
| gesvd [Slap_D] | gesvd ?jobu ?jobvt ?s ?u ?vt ?work a computes the singular value
decomposition (SVD) of 'm-by-'n general rectangular matrix a:
a = U * D * V^T where
|
| gesvd_min_lwork [Slap_S] | gesvd_min_lwork ~m ~n computes the minimum length of workspace for
gesvd routine.
|
| gesvd_min_lwork [Slap_D] | gesvd_min_lwork ~m ~n computes the minimum length of workspace for
gesvd routine.
|
| gesvd_opt_lwork [Slap_S] | gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt computes the optimum length of
workspace for gesvd routine.
|
| gesvd_opt_lwork [Slap_D] | gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt computes the optimum length of
workspace for gesvd routine.
|
| get_dyn [Slap_C.Mat] | get_dyn a i j
|
| get_dyn [Slap_C.Vec] | get_dyn x i
|
| get_dyn [Slap_Z.Mat] | get_dyn a i j
|
| get_dyn [Slap_Z.Vec] | get_dyn x i
|
| get_dyn [Slap_S.Mat] | get_dyn a i j
|
| get_dyn [Slap_S.Vec] | get_dyn x i
|
| get_dyn [Slap_D.Mat] | get_dyn a i j
|
| get_dyn [Slap_D.Vec] | get_dyn x i
|
| get_dyn [Slap_mat] | get_dyn a i j
|
| get_dyn [Slap_vec] | get_dyn x i
|
| get_transposed_dim [Slap_common] | get_transposed_dim trans m n returns (m * n) if trans is Slap_common.normal;, (n * m) if trans is Slap_common.trans or Slap_common.conjtr.
|
| getrf [Slap_C] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
| getrf [Slap_Z] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
| getrf [Slap_S] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
| getrf [Slap_D] | getrf ?ipiv a computes LU factorization of matrix a using partial
pivoting with row interchanges: a = P * L * U where P is a permutation
matrix, and L and U are lower and upper triangular matrices,
respectively.
|
| getri [Slap_C] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
| getri [Slap_Z] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
| getri [Slap_S] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
| getri [Slap_D] | getri ?ipiv ?work a computes the inverse of general matrix a by
LU-factorization.
|
| getri_min_lwork [Slap_C] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
| getri_min_lwork [Slap_Z] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
| getri_min_lwork [Slap_S] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
| getri_min_lwork [Slap_D] | getri_min_lwork n computes the minimum length of workspace for getri
routine.
|
| getri_opt_lwork [Slap_C] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
| getri_opt_lwork [Slap_Z] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
| getri_opt_lwork [Slap_S] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
| getri_opt_lwork [Slap_D] | getri_opt_lwork a computes the optimal length of workspace for getri
routine.
|
| getrs [Slap_C] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n-by-'n general matrix, each column of matrix b is the
r.h.s.
|
| getrs [Slap_Z] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n-by-'n general matrix, each column of matrix b is the
r.h.s.
|
| getrs [Slap_S] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n-by-'n general matrix, each column of matrix b is the
r.h.s.
|
| getrs [Slap_D] | getrs ?ipiv trans a b solves systems of linear equations OP(a) * x = b
where a a 'n-by-'n general matrix, each column of matrix b is the
r.h.s.
|
H | |
| hd [Slap_C.Vec] | |
| hd [Slap_Z.Vec] | |
| hd [Slap_S.Vec] | |
| hd [Slap_D.Vec] | |
| hd [Slap_vec] | |
| hd_dyn [Slap_C.Vec] | |
| hd_dyn [Slap_Z.Vec] | |
| hd_dyn [Slap_S.Vec] | |
| hd_dyn [Slap_D.Vec] | |
| hd_dyn [Slap_vec] | |
| horizontal_default [Slap_io.Context] |
- If
Some n, the first n columns and the last n columns of a table
are printed.
|
I | |
| iamax [Slap_C] | iamax x returns the index of the maximum value of all elements in x.
|
| iamax [Slap_Z] | iamax x returns the index of the maximum value of all elements in x.
|
| iamax [Slap_S] | iamax x returns the index of the maximum value of all elements in x.
|
| iamax [Slap_D] | iamax x returns the index of the maximum value of all elements in x.
|
| identity [Slap_misc] |
The identity function.
|
| identity [Slap_C.Mat] | identity n
|
| identity [Slap_Z.Mat] | identity n
|
| identity [Slap_S.Mat] | identity n
|
| identity [Slap_D.Mat] | identity n
|
| init [Slap_C.Mat] |
An alias of
init_cols.
|
| init [Slap_C.Vec] | init n f
|
| init [Slap_Z.Mat] |
An alias of
init_cols.
|
| init [Slap_Z.Vec] | init n f
|
| init [Slap_S.Mat] |
An alias of
init_cols.
|
| init [Slap_S.Vec] | init n f
|
| init [Slap_D.Mat] |
An alias of
init_cols.
|
| init [Slap_D.Vec] | init n f
|
| init [Slap_mat] |
An alias of
init_cols.
|
| init [Slap_vec] | init kind n f
|
| init_cols [Slap_C.Mat] | init_cols m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_cols [Slap_Z.Mat] | init_cols m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_cols [Slap_S.Mat] | init_cols m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_cols [Slap_D.Mat] | init_cols m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_cols [Slap_mat] | init_cols kind m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_rows [Slap_C.Mat] | init_rows m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_rows [Slap_Z.Mat] | init_rows m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_rows [Slap_S.Mat] | init_rows m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_rows [Slap_D.Mat] | init_rows m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| init_rows [Slap_mat] | init_rows kind m n f returns a fresh m-by-n matrix whose
the (i,j) element is initialized by the result of calling f i j.
|
| inits [Slap_C.Vec] | |
| inits [Slap_Z.Vec] | |
| inits [Slap_S.Vec] | |
| inits [Slap_D.Vec] | |
| inits [Slap_vec] | |
| inits_dyn [Slap_C.Vec] | |
| inits_dyn [Slap_Z.Vec] | |
| inits_dyn [Slap_S.Vec] | |
| inits_dyn [Slap_D.Vec] | |
| inits_dyn [Slap_vec] | |
| invalid_argf [Slap_misc] | invalid_arg + printf-style format
|
| iszero [Slap_size] | iszero n returns true if size n is zero.
|
| iter [Slap_C.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
|
| iter [Slap_Z.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
|
| iter [Slap_S.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
|
| iter [Slap_D.Vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
|
| iter [Slap_vec] | iter f (x1, x2, ..., xn) is f x1; f x2; ...; f xn.
|
| iter [Slap_size] | iter f n is f 1; f 2; ...; f n.
|
| iter2 [Slap_C.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn.
|
| iter2 [Slap_Z.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn.
|
| iter2 [Slap_S.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn.
|
| iter2 [Slap_D.Vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn.
|
| iter2 [Slap_vec] | iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f x1 y1; f x2 y2; ...; f xn yn.
|
| iter3 [Slap_C.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
|
| iter3 [Slap_Z.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
|
| iter3 [Slap_S.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
|
| iter3 [Slap_D.Vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
|
| iter3 [Slap_vec] | iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn.
|
| iteri [Slap_C.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
|
| iteri [Slap_Z.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
|
| iteri [Slap_S.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
|
| iteri [Slap_D.Vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
|
| iteri [Slap_vec] | iteri f (x1, x2, ..., xn) is f 1 x1; f 2 x2; ...; f n xn.
|
| iteri [Slap_size] | iteri f n is f 1; f 2; ...; f (to_int n).
|
| iteri2 [Slap_C.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
|
| iteri2 [Slap_Z.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
|
| iteri2 [Slap_S.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
|
| iteri2 [Slap_D.Vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
|
| iteri2 [Slap_vec] | iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn) is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn.
|
| iteri3 [Slap_C.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
|
| iteri3 [Slap_Z.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
|
| iteri3 [Slap_S.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
|
| iteri3 [Slap_D.Vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
|
| iteri3 [Slap_vec] | iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn.
|
K | |
| kind [Slap_mat] | |
| kind [Slap_vec] | |
L | |
| lacaml_svd_job [Slap_common] | |
| lacaml_trans2 [Slap_common] | |
| lacaml_trans3 [Slap_common] | |
| lacpy [Slap_C] | lacpy ?uplo ?b a copies the matrix a into the matrix b.
|
| lacpy [Slap_Z] | lacpy ?uplo ?b a copies the matrix a into the matrix b.
|
| lacpy [Slap_S] | lacpy ?uplo ?b a copies the matrix a into the matrix b.
|
| lacpy [Slap_D] | lacpy ?uplo ?b a copies the matrix a into the matrix b.
|
| lamch [Slap_S] | lamch cmach see LAPACK documentation.
|
| lamch [Slap_D] | lamch cmach see LAPACK documentation.
|
| lange [Slap_C] | lange ?norm ?work a
|
| lange [Slap_Z] | lange ?norm ?work a
|
| lange [Slap_S] | lange ?norm ?work a
|
| lange [Slap_D] | lange ?norm ?work a
|
| lange_min_lwork [Slap_C] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
| lange_min_lwork [Slap_Z] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
| lange_min_lwork [Slap_S] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
| lange_min_lwork [Slap_D] | lange_min_lwork m norm computes the minimum length of workspace for
lange routine.
|
| lansy [Slap_S] | lansy ?up ?norm ?work a
|
| lansy [Slap_D] | lansy ?up ?norm ?work a
|
| lansy_min_lwork [Slap_S] | lansy_min_lwork n norm computes the minimum length of workspace for
lansy routine.
|
| lansy_min_lwork [Slap_D] | lansy_min_lwork n norm computes the minimum length of workspace for
lansy routine.
|
| larnv [Slap_C] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed.
|
| larnv [Slap_Z] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed.
|
| larnv [Slap_S] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed.
|
| larnv [Slap_D] | larnv ?idist ?iseed ~x () generates a random vector with the random
distribution specified by idist and random seed iseed.
|
| lassq [Slap_C] | lassq ?scale ?sumsq x
|
| lassq [Slap_Z] | lassq ?scale ?sumsq x
|
| lassq [Slap_S] | lassq ?scale ?sumsq x
|
| lassq [Slap_D] | lassq ?scale ?sumsq x
|
| last [Slap_C.Vec] | |
| last [Slap_Z.Vec] | |
| last [Slap_S.Vec] | |
| last [Slap_D.Vec] | |
| last [Slap_vec] | |
| last_dyn [Slap_C.Vec] | |
| last_dyn [Slap_Z.Vec] | |
| last_dyn [Slap_S.Vec] | |
| last_dyn [Slap_D.Vec] | |
| last_dyn [Slap_vec] | |
| lauum [Slap_C] | lauum ?up a computes
|
| lauum [Slap_Z] | lauum ?up a computes
|
| lauum [Slap_S] | lauum ?up a computes
|
| lauum [Slap_D] | lauum ?up a computes
|
| left [Slap_common] |
Left multiplication
|
| log [Slap_S.Vec] | log ?y (x1, x2, ..., xn) returns (log x1, log x2, ..., log xn).
|
| log [Slap_D.Vec] | log ?y (x1, x2, ..., xn) returns (log x1, log x2, ..., log xn).
|
| lower [Slap_common] |
Using the lower triangular (or trapezoidal) part of a matrix.
|
| lsc [Slap_io.Toplevel] |
An alias of
ssc for compatibility with Lacaml.
|
| luband_dyn [Slap_C.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
| luband_dyn [Slap_Z.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
| luband_dyn [Slap_S.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
| luband_dyn [Slap_D.Mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
| luband_dyn [Slap_mat] | luband_dyn kl ku ?ab a converts matrix a into a matrix stored in band
storage for LU factorization.
|
| luband_dyn [Slap_size] | luband_dyn m n kl ku computs the band storage size for LU factorization of
m-by-n band matrices with kl subdiagonals and ku superdiagonals.
|
M | |
| major [Slap_version] |
The major version of SLAP.
|
| make [Slap_C.Mat] | make m n x
|
| make [Slap_C.Vec] | make n a
|
| make [Slap_Z.Mat] | make m n x
|
| make [Slap_Z.Vec] | make n a
|
| make [Slap_S.Mat] | make m n x
|
| make [Slap_S.Vec] | make n a
|
| make [Slap_D.Mat] | make m n x
|
| make [Slap_D.Vec] | make n a
|
| make [Slap_mat] | make kind m n x
|
| make [Slap_vec] | make kind n a
|
| make0 [Slap_C.Mat] | make0 m n
|
| make0 [Slap_C.Vec] | zeros n
|
| make0 [Slap_Z.Mat] | make0 m n
|
| make0 [Slap_Z.Vec] | zeros n
|
| make0 [Slap_S.Mat] | make0 m n
|
| make0 [Slap_S.Vec] | zeros n
|
| make0 [Slap_D.Mat] | make0 m n
|
| make0 [Slap_D.Vec] | zeros n
|
| make1 [Slap_C.Mat] | make1 m n
|
| make1 [Slap_C.Vec] | make1 n
|
| make1 [Slap_Z.Mat] | make1 m n
|
| make1 [Slap_Z.Vec] | make1 n
|
| make1 [Slap_S.Mat] | make1 m n
|
| make1 [Slap_S.Vec] | make1 n
|
| make1 [Slap_D.Mat] | make1 m n
|
| make1 [Slap_D.Vec] | make1 n
|
| map [Slap_C.Mat] | |
| map [Slap_C.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn).
|
| map [Slap_Z.Mat] | |
| map [Slap_Z.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn).
|
| map [Slap_S.Mat] | |
| map [Slap_S.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn).
|
| map [Slap_D.Mat] | |
| map [Slap_D.Vec] | map f ?y (x1, ..., xn) is (f x1, ..., f xn).
|
| map [Slap_mat] | |
| map [Slap_vec] | map kind f ?y (x1, ..., xn) is (f x1, ..., f xn).
|
| map2 [Slap_C.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn).
|
| map2 [Slap_Z.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn).
|
| map2 [Slap_S.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn).
|
| map2 [Slap_D.Vec] | map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn).
|
| map2 [Slap_vec] | map2 kind f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f x1 y1, f x2 y2, ..., f xn yn).
|
| map3 [Slap_C.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
|
| map3 [Slap_Z.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
|
| map3 [Slap_S.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
|
| map3 [Slap_D.Vec] | map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
|
| map3 [Slap_vec] | map3 kind f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn).
|
| mapi [Slap_C.Mat] | |
| mapi [Slap_C.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n.
|
| mapi [Slap_Z.Mat] | |
| mapi [Slap_Z.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n.
|
| mapi [Slap_S.Mat] | |
| mapi [Slap_S.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n.
|
| mapi [Slap_D.Mat] | |
| mapi [Slap_D.Vec] | mapi f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n.
|
| mapi [Slap_mat] | |
| mapi [Slap_vec] | mapi kind f ?y (x1, ..., xn) is (f 1 x1, ..., f n xn) with
the vector's dimension n.
|
| mapi2 [Slap_C.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
|
| mapi2 [Slap_Z.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
|
| mapi2 [Slap_S.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
|
| mapi2 [Slap_D.Vec] | mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
|
| mapi2 [Slap_vec] | mapi2 kind f ?z (x1, x2, ..., xn) (y1, y2, ..., yn) is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn) with the vectors' dimension n.
|
| mapi3 [Slap_C.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n.
|
| mapi3 [Slap_Z.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n.
|
| mapi3 [Slap_S.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n.
|
| mapi3 [Slap_D.Vec] | mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n.
|
| mapi3 [Slap_vec] | mapi3 kind f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn) with the vectors'
dimension n.
|
| max [Slap_C.Vec] | max x
|
| max [Slap_Z.Vec] | max x
|
| max [Slap_S.Vec] | max x
|
| max [Slap_D.Vec] | max x
|
| max [Slap_size] | max m n
|
| mem [Slap_vec] | mem ?equal a v
|
| micro [Slap_version] |
The micro version of SLAP.
|
| min [Slap_C.Vec] | min x
|
| min [Slap_Z.Vec] | min x
|
| min [Slap_S.Vec] | min x
|
| min [Slap_D.Vec] | min x
|
| min [Slap_size] | min m n
|
| minor [Slap_version] |
The minor version of SLAP.
|
| mul [Slap_C.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn).
|
| mul [Slap_Z.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn).
|
| mul [Slap_S.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn).
|
| mul [Slap_D.Vec] | mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 * y1, x2 * y2, ..., xn * yn).
|
| mul [Slap_size] | mul m n
|
N | |
| neg [Slap_C.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
|
| neg [Slap_Z.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
|
| neg [Slap_S.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
|
| neg [Slap_D.Vec] | neg ?y (x1, x2, ..., xn) returns (-x1, -x2, ..., -xn).
|
| nine [Slap_size] | |
| non_unit [Slap_common] |
A matrix is not unit triagular.
|
| nonzero [Slap_size] | nonzero n returns true if size n is not zero.
|
| norm_1 [Slap_common] |
1-norm of a matrix (maximum column sum).
|
| norm_amax [Slap_common] |
Largest absolute value of a matrix.
|
| norm_frob [Slap_common] |
Frobenius norm of a matrix.
|
| norm_inf [Slap_common] |
Infinity-norm of a matrix (maximum row sum).
|
| normal [Slap_common] |
Non-transposed matrix.
|
| nrm2 [Slap_C] | nrm2 x retruns the L2 norm of vector x: ||x||.
|
| nrm2 [Slap_Z] | nrm2 x retruns the L2 norm of vector x: ||x||.
|
| nrm2 [Slap_S] | nrm2 x retruns the L2 norm of vector x: ||x||.
|
| nrm2 [Slap_D] | nrm2 x retruns the L2 norm of vector x: ||x||.
|
O | |
| of_array [Slap_C.Mat] | module M = (val of_array aa : CNTMAT)
|
| of_array [Slap_C.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
| of_array [Slap_Z.Mat] | module M = (val of_array aa : CNTMAT)
|
| of_array [Slap_Z.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
| of_array [Slap_S.Mat] | module M = (val of_array aa : CNTMAT)
|
| of_array [Slap_S.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
| of_array [Slap_D.Mat] | module M = (val of_array aa : CNTMAT)
|
| of_array [Slap_D.Vec] | module V = (val of_array [|a1; ...; an|] : CNTVEC)
|
| of_array_c [Slap_C.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
| of_array_c [Slap_C.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
| of_array_c [Slap_Z.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
| of_array_c [Slap_Z.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
| of_array_c [Slap_S.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
| of_array_c [Slap_S.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
| of_array_c [Slap_D.Mat] | let Slap.Mat.MAT n = of_array_c arr
|
| of_array_c [Slap_D.Vec] | let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
|
| of_array_c [Slap_mat] | let MAT n = of_array_c kind arr
|
| of_array_c [Slap_vec] | let VEC n = of_array_c kind [|a1; ...; an|]
|
| of_array_dyn [Slap_C.Mat] |
Build a matrix initialized from the given array of arrays.
|
| of_array_dyn [Slap_C.Vec] | of_array_dyn n [|a1; ...; an|]
|
| of_array_dyn [Slap_Z.Mat] |
Build a matrix initialized from the given array of arrays.
|
| of_array_dyn [Slap_Z.Vec] | of_array_dyn n [|a1; ...; an|]
|
| of_array_dyn [Slap_S.Mat] |
Build a matrix initialized from the given array of arrays.
|
| of_array_dyn [Slap_S.Vec] | of_array_dyn n [|a1; ...; an|]
|
| of_array_dyn [Slap_D.Mat] |
Build a matrix initialized from the given array of arrays.
|
| of_array_dyn [Slap_D.Vec] | of_array_dyn n [|a1; ...; an|]
|
| of_array_dyn [Slap_mat] |
Build a matrix initialized from the given array of arrays.
|
| of_array_dyn [Slap_vec] | of_array_dyn kind n [|a1; ...; an|]
|
| of_bigarray [Slap_C.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
| of_bigarray [Slap_C.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
| of_bigarray [Slap_Z.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
| of_bigarray [Slap_Z.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
| of_bigarray [Slap_S.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
| of_bigarray [Slap_S.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
| of_bigarray [Slap_D.Mat] | module M = (val of_bigarray ba : CNTMAT)
|
| of_bigarray [Slap_D.Vec] | module V = (val of_bigarray ?share n ba : CNTVEC)
|
| of_bigarray_c [Slap_C.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_C.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_Z.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_Z.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_S.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_S.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_D.Mat] | let Slap.Mat.MAT n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_D.Vec] | let Slap.Vec.VEC n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_mat] | let MAT n = of_bigarray_c ?share ba
|
| of_bigarray_c [Slap_vec] | let VEC n = of_bigarray_c ?share ba
|
| of_bigarray_dyn [Slap_C.Mat] | of_bigarray_dyn ?share m n ba
|
| of_bigarray_dyn [Slap_C.Vec] | of_bigarray_dyn ?share n ba
|
| of_bigarray_dyn [Slap_Z.Mat] | of_bigarray_dyn ?share m n ba
|
| of_bigarray_dyn [Slap_Z.Vec] | of_bigarray_dyn ?share n ba
|
| of_bigarray_dyn [Slap_S.Mat] | of_bigarray_dyn ?share m n ba
|
| of_bigarray_dyn [Slap_S.Vec] | of_bigarray_dyn ?share n ba
|
| of_bigarray_dyn [Slap_D.Mat] | of_bigarray_dyn ?share m n ba
|
| of_bigarray_dyn [Slap_D.Vec] | of_bigarray_dyn ?share n ba
|
| of_bigarray_dyn [Slap_mat] | of_bigarray_dyn ?share m n ba
|
| of_bigarray_dyn [Slap_vec] | of_bigarray_dyn ?share n ba
|
| of_col_vecs_dyn [Slap_C.Mat] | |
| of_col_vecs_dyn [Slap_Z.Mat] | |
| of_col_vecs_dyn [Slap_S.Mat] | |
| of_col_vecs_dyn [Slap_D.Mat] | |
| of_int_c_dyn [Slap_size] | let SIZE n = of_int_c_dyn i
|
| of_int_dyn [Slap_size] | module N = (val of_int_dyn n : SIZE)
|
| of_list [Slap_C.Mat] | module M = (val of_list ll : CNTMAT)
|
| of_list [Slap_C.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
| of_list [Slap_Z.Mat] | module M = (val of_list ll : CNTMAT)
|
| of_list [Slap_Z.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
| of_list [Slap_S.Mat] | module M = (val of_list ll : CNTMAT)
|
| of_list [Slap_S.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
| of_list [Slap_D.Mat] | module M = (val of_list ll : CNTMAT)
|
| of_list [Slap_D.Vec] | module V = (val of_list [a1; ...; an] : CNTVEC)
|
| of_list_c [Slap_C.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
| of_list_c [Slap_C.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
| of_list_c [Slap_Z.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
| of_list_c [Slap_Z.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
| of_list_c [Slap_S.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
| of_list_c [Slap_S.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
| of_list_c [Slap_D.Mat] | let Slap.Mat.MAT n = of_list_c kind lst
|
| of_list_c [Slap_D.Vec] | let Slap.Vec.VEC n = of_list_c [a1; ...; an]
|
| of_list_c [Slap_mat] | let MAT n = of_list_c kind lst
|
| of_list_c [Slap_vec] | let VEC n = of_list_c kind [a1; ...; an]
|
| of_list_dyn [Slap_C.Mat] |
Build a matrix initialized from the given list of lists.
|
| of_list_dyn [Slap_C.Vec] | of_list_dyn n [a1; ...; an]
|
| of_list_dyn [Slap_Z.Mat] |
Build a matrix initialized from the given list of lists.
|
| of_list_dyn [Slap_Z.Vec] | of_list_dyn n [a1; ...; an]
|
| of_list_dyn [Slap_S.Mat] |
Build a matrix initialized from the given list of lists.
|
| of_list_dyn [Slap_S.Vec] | of_list_dyn n [a1; ...; an]
|
| of_list_dyn [Slap_D.Mat] |
Build a matrix initialized from the given list of lists.
|
| of_list_dyn [Slap_D.Vec] | of_list_dyn n [a1; ...; an]
|
| of_list_dyn [Slap_mat] |
Build a matrix initialized from the given list of lists.
|
| of_list_dyn [Slap_vec] | of_list_dyn kind n [a1; ...; an]
|
| one [Slap_size] | |
| opt_cnt_vec [Slap_vec] | |
| opt_cnt_vec_alloc [Slap_vec] | |
| opt_mat [Slap_mat] | |
| opt_mat_alloc [Slap_mat] | |
| opt_vec [Slap_vec] | |
| opt_vec_alloc [Slap_vec] | |
| opt_work [Slap_vec] | |
| orgqr_dyn [Slap_S] | orgqr_dyn ?work ~tau a generates the orthogonal matrix Q of the QR
factorization formed by geqrf/geqpf.
|
| orgqr_dyn [Slap_D] | orgqr_dyn ?work ~tau a generates the orthogonal matrix Q of the QR
factorization formed by geqrf/geqpf.
|
| orgqr_min_lwork [Slap_S] | orgqr_min_lwork ~n computes the minimum length of workspace for
orgqr routine.
|
| orgqr_min_lwork [Slap_D] | orgqr_min_lwork ~n computes the minimum length of workspace for
orgqr routine.
|
| orgqr_opt_lwork [Slap_S] | orgqr_min_lwork ~tau a computes the optimum length of workspace for
orgqr routine.
|
| orgqr_opt_lwork [Slap_D] | orgqr_min_lwork ~tau a computes the optimum length of workspace for
orgqr routine.
|
| ormqr_dyn [Slap_S] | ormqr_dyn ~side ~trans ?work ~tau a c multiplies a matrix c by the
orthogonal matrix Q of the QR factorization formed by geqrf/geqpf:
|
| ormqr_dyn [Slap_D] | ormqr_dyn ~side ~trans ?work ~tau a c multiplies a matrix c by the
orthogonal matrix Q of the QR factorization formed by geqrf/geqpf:
|
| ormqr_min_lwork [Slap_S] | ormqr_min_lwork ~side ~m ~n computes the minimum length of workspace for
ormqr routine.
|
| ormqr_min_lwork [Slap_D] | ormqr_min_lwork ~side ~m ~n computes the minimum length of workspace for
ormqr routine.
|
| ormqr_opt_lwork [Slap_S] | ormqr_opt_lwork ~side ~trans ~tau a c computes the optimum length of
workspace for ormqr routine.
|
| ormqr_opt_lwork [Slap_D] | ormqr_opt_lwork ~side ~trans ~tau a c computes the optimum length of
workspace for ormqr routine.
|
P | |
| packed [Slap_C.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
| packed [Slap_Z.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
| packed [Slap_S.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
| packed [Slap_D.Mat] | packed ?up ?x a transforms matrix a into packed storage format.
|
| packed [Slap_mat] | packed ?up ?x a transforms triangular matrix a into packed storage
format.
|
| packed [Slap_size] | packed n computes the packed storage size of a n-by-n matrix.
|
| pbsv [Slap_C] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n-by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| pbsv [Slap_Z] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n-by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| pbsv [Slap_S] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n-by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| pbsv [Slap_D] | pbsv ?up ~kd ab b solves systems of linear equations ab * x = b where
ab is a 'n-by-'n symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b is
the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| pocon [Slap_S] | pocon ?up ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric positive-definite matrix a.
|
| pocon [Slap_D] | pocon ?up ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric positive-definite matrix a.
|
| pocon_min_liwork [Slap_S] | pocon_min_liwork n computes the minimum length of workspace iwork for
pocon routine.
|
| pocon_min_liwork [Slap_D] | pocon_min_liwork n computes the minimum length of workspace iwork for
pocon routine.
|
| pocon_min_lwork [Slap_S] | pocon_min_lwork n computes the minimum length of workspace work for
pocon routine.
|
| pocon_min_lwork [Slap_D] | pocon_min_lwork n computes the minimum length of workspace work for
pocon routine.
|
| posv [Slap_C] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| posv [Slap_Z] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| posv [Slap_S] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| posv [Slap_D] | posv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x is the corresponding
solution.
|
| potrf [Slap_C] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a:
|
| potrf [Slap_Z] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a:
|
| potrf [Slap_S] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a:
|
| potrf [Slap_D] | potrf ?up ?jitter a computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a:
|
| potri [Slap_C] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
| potri [Slap_Z] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
| potri [Slap_S] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
| potri [Slap_D] | potrf ?up ?jitter a computes the inverse of symmetrix (Hermitian)
positive-definite matrix a using the Cholesky factorization:
|
| potrs [Slap_C] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a:
|
| potrs [Slap_Z] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a:
|
| potrs [Slap_S] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a:
|
| potrs [Slap_D] | potrf ?up a ?jitter b solves systems of linear equations a * x = b using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a:
|
| pp_cmat [Slap_io.Toplevel] | |
| pp_cmat [Slap_io] | |
| pp_complex_el_default [Slap_io] | fprintf ppf "(%G, %Gi)" x.re x.im
|
| pp_cvec [Slap_io.Toplevel] | |
| pp_cvec [Slap_io] | |
| pp_float_el_default [Slap_io] | fprintf ppf "%G" el
|
| pp_fmat [Slap_io.Toplevel] | |
| pp_fmat [Slap_io] | |
| pp_fvec [Slap_io.Toplevel] | |
| pp_fvec [Slap_io] | |
| pp_imat [Slap_io.Toplevel] | |
| pp_imat [Slap_io] | |
| pp_int32_el_default [Slap_io] | fprintf ppf "%ld" x
|
| pp_ivec [Slap_io.Toplevel] | |
| pp_ivec [Slap_io] | |
| pp_mat [Slap_C] |
A pretty-printer for matrices.
|
| pp_mat [Slap_Z] |
A pretty-printer for matrices.
|
| pp_mat [Slap_S] |
A pretty-printer for matrices.
|
| pp_mat [Slap_D] |
A pretty-printer for matrices.
|
| pp_mat_gen [Slap_io] |
A generator of pretty printers for matrices.
|
| pp_num [Slap_C] |
A pretty-printer for elements in vectors and matrices.
|
| pp_num [Slap_Z] |
A pretty-printer for elements in vectors and matrices.
|
| pp_num [Slap_S] |
A pretty-printer for elements in vectors and matrices.
|
| pp_num [Slap_D] |
A pretty-printer for elements in vectors and matrices.
|
| pp_rcvec [Slap_io.Toplevel] | |
| pp_rcvec [Slap_io] | |
| pp_rfvec [Slap_io.Toplevel] | |
| pp_rfvec [Slap_io] | |
| pp_rivec [Slap_io.Toplevel] | |
| pp_rivec [Slap_io] | |
| pp_rvec_gen [Slap_io] |
A generator of pretty printers for row vectors.
|
| pp_table [Slap_io] | pp_table
?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col
?pp_left ?pp_right ?pad ?ellipsis ?vertical_context ?horizontal_context
pp_el ppf n_rows n_cols get_el
|
| pp_vec [Slap_C] |
A pretty-printer for column vectors.
|
| pp_vec [Slap_Z] |
A pretty-printer for column vectors.
|
| pp_vec [Slap_S] |
A pretty-printer for column vectors.
|
| pp_vec [Slap_D] |
A pretty-printer for column vectors.
|
| pp_vec_gen [Slap_io] |
A generator of pretty printers for (column) vectors.
|
| ppsv [Slap_C] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| ppsv [Slap_Z] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| ppsv [Slap_S] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| ppsv [Slap_D] | ppsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric positive-definite matrix stored in packed format,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| prec [Slap_C] | |
| prec [Slap_Z] | |
| prec [Slap_S] | |
| prec [Slap_D] | |
| pred [Slap_size] | pred n returns
|
| pred_dyn [Slap_size] | pred_dyn n
|
| prod [Slap_C.Vec] | prod x
|
| prod [Slap_Z.Vec] | prod x
|
| prod [Slap_S.Vec] | prod x
|
| prod [Slap_D.Vec] | prod x
|
| ptsv [Slap_C] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e, each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
| ptsv [Slap_Z] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e, each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
| ptsv [Slap_S] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e, each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
| ptsv [Slap_D] | ptsv d e b solves systems of linear equations A * x = b where A is a
'n-by-'n symmetric positive-definite tridiagonal matrix with diagonal
elements d and subdiagonal elements e, each column of matrix b is the
r.h.s vector, and each column of matrix x is the corresponding solution.
|
R | |
| random [Slap_C.Mat] | random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly
initialized with the uniform distribution between re_from/im_from and
re_from+re_range/im_from+im_range for real and imaginary parts,
respectively.
|
| random [Slap_C.Vec] | random ?rnd_state ?from ?range n creates a n-dimensional vector randomly
initialized with the uniform distribution between re_from/im_from and
re_from+re_range/im_from+im_range for real and imaginary parts,
respectively.
|
| random [Slap_Z.Mat] | random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly
initialized with the uniform distribution between re_from/im_from and
re_from+re_range/im_from+im_range for real and imaginary parts,
respectively.
|
| random [Slap_Z.Vec] | random ?rnd_state ?from ?range n creates a n-dimensional vector randomly
initialized with the uniform distribution between re_from/im_from and
re_from+re_range/im_from+im_range for real and imaginary parts,
respectively.
|
| random [Slap_S.Mat] | random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly
initialized with the uniform distribution between from and from + range.
|
| random [Slap_S.Vec] | random ?rnd_state ?from ?range n creates a n-dimensional vector randomly
initialized with the uniform distribution between from and from + range.
|
| random [Slap_D.Mat] | random ?rnd_state ?from ?range m n creates a m-by-n matrix randomly
initialized with the uniform distribution between from and from + range.
|
| random [Slap_D.Vec] | random ?rnd_state ?from ?range n creates a n-dimensional vector randomly
initialized with the uniform distribution between from and from + range.
|
| reci [Slap_C.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
|
| reci [Slap_Z.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
|
| reci [Slap_S.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
|
| reci [Slap_D.Vec] | reci ?y (x1, x2, ..., xn) returns (1 / x1, 1 / x2, ..., 1 / xn).
|
| replace_all [Slap_C.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f aij.
|
| replace_all [Slap_C.Vec] | replace_all x f modifies the vector x in place
-- the i-th element xi of x will be set to f xi.
|
| replace_all [Slap_Z.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f aij.
|
| replace_all [Slap_Z.Vec] | replace_all x f modifies the vector x in place
-- the i-th element xi of x will be set to f xi.
|
| replace_all [Slap_S.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f aij.
|
| replace_all [Slap_S.Vec] | replace_all x f modifies the vector x in place
-- the i-th element xi of x will be set to f xi.
|
| replace_all [Slap_D.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f aij.
|
| replace_all [Slap_D.Vec] | replace_all x f modifies the vector x in place
-- the i-th element xi of x will be set to f xi.
|
| replace_all [Slap_mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f aij.
|
| replace_all [Slap_vec] | replace_all x f modifies the vector x in place
-- the i-th element xi of x will be set to f xi.
|
| replace_alli [Slap_C.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f i j aij.
|
| replace_alli [Slap_C.Vec] | replace_alli x f modifies the vector x in place
-- the i-th element xi of x will be set to f i xi.
|
| replace_alli [Slap_Z.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f i j aij.
|
| replace_alli [Slap_Z.Vec] | replace_alli x f modifies the vector x in place
-- the i-th element xi of x will be set to f i xi.
|
| replace_alli [Slap_S.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f i j aij.
|
| replace_alli [Slap_S.Vec] | replace_alli x f modifies the vector x in place
-- the i-th element xi of x will be set to f i xi.
|
| replace_alli [Slap_D.Mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f i j aij.
|
| replace_alli [Slap_D.Vec] | replace_alli x f modifies the vector x in place
-- the i-th element xi of x will be set to f i xi.
|
| replace_alli [Slap_mat] | replace_all a f modifies the matrix a in place
-- the (i,j)-element aij of a will be set to f i j aij.
|
| replace_alli [Slap_vec] | replace_alli x f modifies the vector x in place
-- the i-th element xi of x will be set to f i xi.
|
| replace_dyn [Slap_C.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
|
| replace_dyn [Slap_Z.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
|
| replace_dyn [Slap_S.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
|
| replace_dyn [Slap_D.Vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
|
| replace_dyn [Slap_mat] | replace_dyn a i j f is set a i j (f (get a i j)).
|
| replace_dyn [Slap_vec] | replace_dyn v i f is set_dyn v i (f (get_dyn v i)).
|
| rev [Slap_C.Vec] | rev (x1, x2, ..., xn)
|
| rev [Slap_Z.Vec] | rev (x1, x2, ..., xn)
|
| rev [Slap_S.Vec] | rev (x1, x2, ..., xn)
|
| rev [Slap_D.Vec] | rev (x1, x2, ..., xn)
|
| rev [Slap_vec] | rev (x1, x2, ..., xn)
|
| right [Slap_common] |
Right multiplication
|
| riter [Slap_size] | riter f n is f n; ...; f 2; f 1.
|
| riteri [Slap_size] | riteri f n is f (to_int n); ...; f 2; f 1.
|
| row_dyn [Slap_C.Mat] | row_dyn a i
|
| row_dyn [Slap_Z.Mat] | row_dyn a i
|
| row_dyn [Slap_S.Mat] | row_dyn a i
|
| row_dyn [Slap_D.Mat] | row_dyn a i
|
| row_dyn [Slap_mat] | row_dyn a i
|
| rprec [Slap_C] | |
| rprec [Slap_Z] | |
| rprec [Slap_S] | |
| rprec [Slap_D] | |
S | |
| sbev [Slap_S] | sbev ~kd ?z ?up ?work ?w ab computes all eigenvalues and, optionally,
eigenvectors of real symmetric band matrix ab store in band storage
format.
|
| sbev [Slap_D] | sbev ~kd ?z ?up ?work ?w ab computes all eigenvalues and, optionally,
eigenvectors of real symmetric band matrix ab store in band storage
format.
|
| sbev_min_lwork [Slap_S] | sbev_min_lwork n computes the minimum length of workspace work
for sbev routine.
|
| sbev_min_lwork [Slap_D] | sbev_min_lwork n computes the minimum length of workspace work
for sbev routine.
|
| sbgv [Slap_S] | sbgv ~ka ~kb ?z ?up ?work ?w ab bb solves a general eigenvalue problem
ab * z = (lambda) * bb * z where ab is a 'n-by-'n symmetric band
matrix with ka subdiagonals, and bb is a 'n-by-'n symmetric
positive-definite band matrix with kb subdiagonals.
|
| sbgv [Slap_D] | sbgv ~ka ~kb ?z ?up ?work ?w ab bb solves a general eigenvalue problem
ab * z = (lambda) * bb * z where ab is a 'n-by-'n symmetric band
matrix with ka subdiagonals, and bb is a 'n-by-'n symmetric
positive-definite band matrix with kb subdiagonals.
|
| sbmv [Slap_S] | sbmv ~k ?y a ?up ?alpha ?beta x computes y := alpha * a * x + beta * y
where a is a 'n-by-'n symmetric band matrix with k
super-(or sub-)diagonals, and x and y are 'n-dimensional vectors.
|
| sbmv [Slap_D] | sbmv ~k ?y a ?up ?alpha ?beta x computes y := alpha * a * x + beta * y
where a is a 'n-by-'n symmetric band matrix with k
super-(or sub-)diagonals, and x and y are 'n-dimensional vectors.
|
| scal [Slap_C.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a.
|
| scal [Slap_C] | scal c x multiplies all elements in x by scalar value c,
and destructively assigns the result to x.
|
| scal [Slap_Z.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a.
|
| scal [Slap_Z] | scal c x multiplies all elements in x by scalar value c,
and destructively assigns the result to x.
|
| scal [Slap_S.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a.
|
| scal [Slap_S] | scal c x multiplies all elements in x by scalar value c,
and destructively assigns the result to x.
|
| scal [Slap_D.Mat] | scal alpha a computes a := alpha * a with the scalar value alpha and
the matrix a.
|
| scal [Slap_D] | scal c x multiplies all elements in x by scalar value c,
and destructively assigns the result to x.
|
| scal_cols [Slap_C.Mat] |
A column-wise
scal function for matrices.
|
| scal_cols [Slap_Z.Mat] |
A column-wise
scal function for matrices.
|
| scal_cols [Slap_S.Mat] |
A column-wise
scal function for matrices.
|
| scal_cols [Slap_D.Mat] |
A column-wise
scal function for matrices.
|
| scal_rows [Slap_C.Mat] |
A row-wise
scal function for matrices.
|
| scal_rows [Slap_Z.Mat] |
A row-wise
scal function for matrices.
|
| scal_rows [Slap_S.Mat] |
A row-wise
scal function for matrices.
|
| scal_rows [Slap_D.Mat] |
A row-wise
scal function for matrices.
|
| set_dim_defaults [Slap_io.Context] | set_dim_defaults opt_n sets both Slap_io.Context.vertical_default and
Slap_io.Context.horizontal_default to opt_n.
|
| set_dyn [Slap_C.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a.
|
| set_dyn [Slap_C.Vec] | set_dyn x i a assigns a to the i-th element of the vector x.
|
| set_dyn [Slap_Z.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a.
|
| set_dyn [Slap_Z.Vec] | set_dyn x i a assigns a to the i-th element of the vector x.
|
| set_dyn [Slap_S.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a.
|
| set_dyn [Slap_S.Vec] | set_dyn x i a assigns a to the i-th element of the vector x.
|
| set_dyn [Slap_D.Mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a.
|
| set_dyn [Slap_D.Vec] | set_dyn x i a assigns a to the i-th element of the vector x.
|
| set_dyn [Slap_mat] | set_dyn a i j x assigns x to the (i,j) element of the matrix a.
|
| set_dyn [Slap_vec] | set_dyn x i a assigns a to the i-th element of the vector x.
|
| seven [Slap_size] | |
| shared_rev [Slap_C.Vec] | shared_rev (x1, x2, ..., xn)
|
| shared_rev [Slap_Z.Vec] | shared_rev (x1, x2, ..., xn)
|
| shared_rev [Slap_S.Vec] | shared_rev (x1, x2, ..., xn)
|
| shared_rev [Slap_D.Vec] | shared_rev (x1, x2, ..., xn)
|
| shared_rev [Slap_vec] | shared_rev (x1, x2, ..., xn)
|
| sin [Slap_S.Vec] | sin ?y (x1, x2, ..., xn) returns (sin x1, sin x2, ..., sin xn).
|
| sin [Slap_D.Vec] | sin ?y (x1, x2, ..., xn) returns (sin x1, sin x2, ..., sin xn).
|
| six [Slap_size] | |
| sort [Slap_C.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp.
|
| sort [Slap_Z.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp.
|
| sort [Slap_S.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp.
|
| sort [Slap_D.Vec] | sort ?cmp ?decr ?p x sorts the elements in vector x in increasing order
according to the comparison function cmp.
|
| spsv [Slap_C] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
| spsv [Slap_Z] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
| spsv [Slap_S] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
| spsv [Slap_D] | spsv ?up a b solves systems of linear equations a * x = b where a is
a 'n-by-'n symmetric matrix stored in packed format, each column of
matrix b is the r.h.s.
|
| sqr [Slap_S.Vec] | sqr ?y x computes the square of elements of the vector x.
|
| sqr [Slap_D.Vec] | sqr ?y x computes the square of elements of the vector x.
|
| sqr_nrm2 [Slap_C.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x.
|
| sqr_nrm2 [Slap_Z.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x.
|
| sqr_nrm2 [Slap_S.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x.
|
| sqr_nrm2 [Slap_D.Vec] | sqr_nrm2 ?stable x computes the square of the 2-norm (Euclidean norm) of
vector x.
|
| sqrt [Slap_S.Vec] | sqr ?y x computes the square root of elements of the vector x.
|
| sqrt [Slap_D.Vec] | sqr ?y x computes the square root of elements of the vector x.
|
| ssc [Slap_io.Toplevel] |
SLAP Set Context:
ssc n sets sets both
Slap_io.Context.vertical_default and
Slap_io.Context.horizontal_default to Some n.
|
| ssqr [Slap_C.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c:
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
|
| ssqr [Slap_Z.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c:
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
|
| ssqr [Slap_S.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c:
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
|
| ssqr [Slap_D.Vec] | ssqr ?c (x1, x2, ..., xn) computes the sum of squared differences of the
elements in the given vector from scalar value c:
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2.
|
| ssqr_diff [Slap_C.Vec] | ssqr_diff x yreturns the sum of squared differences of the elements of
vectors x and y.
|
| ssqr_diff [Slap_Z.Vec] | ssqr_diff x yreturns the sum of squared differences of the elements of
vectors x and y.
|
| ssqr_diff [Slap_S.Vec] | ssqr_diff x yreturns the sum of squared differences of the elements of
vectors x and y.
|
| ssqr_diff [Slap_D.Vec] | ssqr_diff x yreturns the sum of squared differences of the elements of
vectors x and y.
|
| sub [Slap_C.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn).
|
| sub [Slap_Z.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn).
|
| sub [Slap_S.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn).
|
| sub [Slap_D.Vec] | sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn) returns
(x1 - y1, x2 - y2, ..., xn - yn).
|
| sub_dyn [Slap_size] | sub_dyn m n
|
| subcntvec_dyn [Slap_C.Vec] | subcntvec_dyn m ?ofsx x
|
| subcntvec_dyn [Slap_Z.Vec] | subcntvec_dyn m ?ofsx x
|
| subcntvec_dyn [Slap_S.Vec] | subcntvec_dyn m ?ofsx x
|
| subcntvec_dyn [Slap_D.Vec] | subcntvec_dyn m ?ofsx x
|
| subcntvec_dyn [Slap_vec] | subcntvec_dyn m ?ofsx x
|
| subdscvec_dyn [Slap_C.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
| subdscvec_dyn [Slap_Z.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
| subdscvec_dyn [Slap_S.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
| subdscvec_dyn [Slap_D.Vec] | subdscvec_dyn m ?ofsx ?incx x
|
| subdscvec_dyn [Slap_vec] | subdscvec_dyn m ?ofsx ?incx x
|
| submat_dyn [Slap_C.Mat] | submat_dyn m n ?ar ?ac a
|
| submat_dyn [Slap_Z.Mat] | submat_dyn m n ?ar ?ac a
|
| submat_dyn [Slap_S.Mat] | submat_dyn m n ?ar ?ac a
|
| submat_dyn [Slap_D.Mat] | submat_dyn m n ?ar ?ac a
|
| submat_dyn [Slap_mat] | submat_dyn m n ?ar ?ac a
|
| subvec_dyn [Slap_C.Vec] |
An alias of
subdscvec_dyn.
|
| subvec_dyn [Slap_Z.Vec] |
An alias of
subdscvec_dyn.
|
| subvec_dyn [Slap_S.Vec] |
An alias of
subdscvec_dyn.
|
| subvec_dyn [Slap_D.Vec] |
An alias of
subdscvec_dyn.
|
| subvec_dyn [Slap_vec] |
An alias of
subdscvec_dyn.
|
| succ [Slap_size] | succ n
|
| sum [Slap_C.Mat] | sum a returns the sum of all elements in a.
|
| sum [Slap_C.Vec] | sum x
|
| sum [Slap_Z.Mat] | sum a returns the sum of all elements in a.
|
| sum [Slap_Z.Vec] | sum x
|
| sum [Slap_S.Mat] | sum a returns the sum of all elements in a.
|
| sum [Slap_S.Vec] | sum x
|
| sum [Slap_D.Mat] | sum a returns the sum of all elements in a.
|
| sum [Slap_D.Vec] | sum x
|
| svd_all [Slap_common] | |
| svd_no [Slap_common] | |
| svd_overwrite [Slap_common] | |
| svd_top [Slap_common] | |
| swap [Slap_C] | swap x y swaps elements in x and y.
|
| swap [Slap_Z] | swap x y swaps elements in x and y.
|
| swap [Slap_S] | swap x y swaps elements in x and y.
|
| swap [Slap_D] | swap x y swaps elements in x and y.
|
| syband_dyn [Slap_C.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
| syband_dyn [Slap_Z.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
| syband_dyn [Slap_S.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
| syband_dyn [Slap_D.Mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
| syband_dyn [Slap_mat] | syband_dyn kd ?b a converts matrix a into a matrix stored in
symmetric or Hermitian band storage.
|
| syband_dyn [Slap_size] | syband_dyn n kd computs the band storage size of symmetric or Hermitian
band matrices with kd superdiagonals or subdiagonals.
|
| sycon [Slap_S] | sycon ?up ?ipiv ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric matrix a.
|
| sycon [Slap_D] | sycon ?up ?ipiv ?anorm ?work ?iwork a estimates the reciprocal of the
condition number of symmetric matrix a.
|
| sycon_min_liwork [Slap_S] | sycon_min_liwork n computes the minimum length of workspace iwork for
sycon routine.
|
| sycon_min_liwork [Slap_D] | sycon_min_liwork n computes the minimum length of workspace iwork for
sycon routine.
|
| sycon_min_lwork [Slap_S] | sycon_min_lwork n computes the minimum length of workspace work for
sycon routine.
|
| sycon_min_lwork [Slap_D] | sycon_min_lwork n computes the minimum length of workspace work for
sycon routine.
|
| syev [Slap_S] | syev ?vectors ?up ?work ?w a computes the eigenvalues and the eigenvectors
of 'n-by-'n symmetric matrix a.
|
| syev [Slap_D] | syev ?vectors ?up ?work ?w a computes the eigenvalues and the eigenvectors
of 'n-by-'n symmetric matrix a.
|
| syev_min_lwork [Slap_S] | syev_min_lwork n computes the minimum length of workspace for
syev routine.
|
| syev_min_lwork [Slap_D] | syev_min_lwork n computes the minimum length of workspace for
syev routine.
|
| syev_opt_lwork [Slap_S] | syev_opt_lwork ?vectors ?up a computes the optimum length of workspace for
syev routine.
|
| syev_opt_lwork [Slap_D] | syev_opt_lwork ?vectors ?up a computes the optimum length of workspace for
syev routine.
|
| syevd [Slap_S] | syev ?vectors ?up ?w a computes the eigenvalues and the eigenvectors of
'n-by-'n symmetric matrix a using divide and conquer method.
|
| syevd [Slap_D] | syev ?vectors ?up ?w a computes the eigenvalues and the eigenvectors of
'n-by-'n symmetric matrix a using divide and conquer method.
|
| syevd_min_liwork [Slap_S] | syevd_min_liwork ?vectors n computes the minimum length of workspace
iwork for syevd routine.
|
| syevd_min_liwork [Slap_D] | syevd_min_liwork ?vectors n computes the minimum length of workspace
iwork for syevd routine.
|
| syevd_min_lwork [Slap_S] | syevd_min_lwork ?vectors n computes the minimum length of workspace work
for syevd routine.
|
| syevd_min_lwork [Slap_D] | syevd_min_lwork ?vectors n computes the minimum length of workspace work
for syevd routine.
|
| syevd_opt_liwork [Slap_S] | syevd_opt_liwork ?vectors ?up a computes the optimum length of workspace
iwork for syevd routine.
|
| syevd_opt_liwork [Slap_D] | syevd_opt_liwork ?vectors ?up a computes the optimum length of workspace
iwork for syevd routine.
|
| syevd_opt_lwork [Slap_S] | syevd_opt_lwork ?vectors ?up a computes the optimum length of workspace
work for syevd routine.
|
| syevd_opt_lwork [Slap_D] | syevd_opt_lwork ?vectors ?up a computes the optimum length of workspace
work for syevd routine.
|
| syevr_dyn [Slap_S] | syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a
computes selected eigenvalues w and, optionally, eigenvectors z of a
real symmetric matrix a using the Relatively Robust Representations.
|
| syevr_dyn [Slap_D] | syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a
computes selected eigenvalues w and, optionally, eigenvectors z of a
real symmetric matrix a using the Relatively Robust Representations.
|
| syevr_min_liwork [Slap_S] | sbevr_min_liwork n computes the minimum length of workspace iwork
for syevr routine.
|
| syevr_min_liwork [Slap_D] | sbevr_min_liwork n computes the minimum length of workspace iwork
for syevr routine.
|
| syevr_min_lwork [Slap_S] | sbevr_min_lwork n computes the minimum length of workspace work
for syevr routine.
|
| syevr_min_lwork [Slap_D] | sbevr_min_lwork n computes the minimum length of workspace work
for syevr routine.
|
| syevr_opt_liwork [Slap_S] | sbevr_opt_liwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace iwork for sbevr routine.
|
| syevr_opt_liwork [Slap_D] | sbevr_opt_liwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace iwork for sbevr routine.
|
| syevr_opt_lwork [Slap_S] | sbevr_opt_lwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace work for syevr routine.
|
| syevr_opt_lwork [Slap_D] | sbevr_opt_lwork ?vectors ?range ?up ?abstol a computes the optimum length
of workspace work for syevr routine.
|
| sygv [Slap_S] | sygv ?vectors ?up ?work ?w ?itype a b solves a real generalized symmetric
definite eigenproblem:
|
| sygv [Slap_D] | sygv ?vectors ?up ?work ?w ?itype a b solves a real generalized symmetric
definite eigenproblem:
|
| sygv_opt_lwork [Slap_S] | sygv_opt_lwork ?vectors ?up ?itype a b computes the optimum length of
workspace work for sbevr routine.
|
| sygv_opt_lwork [Slap_D] | sygv_opt_lwork ?vectors ?up ?itype a b computes the optimum length of
workspace work for sbevr routine.
|
| symm [Slap_C] | symm ~side ?up ?beta ?c ?alpha a b executes
|
| symm [Slap_Z] | symm ~side ?up ?beta ?c ?alpha a b executes
|
| symm [Slap_S] | symm ~side ?up ?beta ?c ?alpha a b executes
|
| symm [Slap_D] | symm ~side ?up ?beta ?c ?alpha a b executes
|
| symm2_trace [Slap_C.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b.
|
| symm2_trace [Slap_Z.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b.
|
| symm2_trace [Slap_S.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b.
|
| symm2_trace [Slap_D.Mat] | symm2_trace ?upa a ?upb b computes the trace of a * b with symmetric
matrices a and b.
|
| symv [Slap_C] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y.
|
| symv [Slap_Z] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y.
|
| symv [Slap_S] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y.
|
| symv [Slap_D] | symv ?beta ?y ?up ?alpha a x executes
y := alpha * a * x + beta * y.
|
| syr [Slap_S] | syr ?alpha x a computes a := alpha * x * x^T + a with
the symmetric matrix a, the vector x and
the transposed vector x^T of x.
|
| syr [Slap_D] | syr ?alpha x a computes a := alpha * x * x^T + a with
the symmetric matrix a, the vector x and
the transposed vector x^T of x.
|
| syr2k [Slap_C] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
| syr2k [Slap_Z] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
| syr2k [Slap_S] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
| syr2k [Slap_D] | syr2k ?up ?beta ?c ~trans ?alpha a b computes
|
| syrk [Slap_C] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
| syrk [Slap_Z] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
| syrk [Slap_S] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
| syrk [Slap_D] | syrk ?up ?beta ?c ~trans ?alpha a executes
|
| syrk_diag [Slap_C.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
| syrk_diag [Slap_Z.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
| syrk_diag [Slap_S.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
| syrk_diag [Slap_D.Mat] | syrk_diag ?beta ?y ~transa ?alpha a executes
|
| syrk_trace [Slap_C.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a.
|
| syrk_trace [Slap_Z.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a.
|
| syrk_trace [Slap_S.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a.
|
| syrk_trace [Slap_D.Mat] | syrk_trace a computes the trace of a * a^T or a^T * a.
|
| sysv [Slap_C] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n-by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
| sysv [Slap_Z] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n-by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
| sysv [Slap_S] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n-by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
| sysv [Slap_D] | sysv ?up ?ipiv ?work a b solves systems of linear equations a * x = b
where a is a 'n-by-'n symmetric matrix, each column of matrix b is
the r.h.s.
|
| sysv_min_lwork [Slap_C] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
| sysv_min_lwork [Slap_Z] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
| sysv_min_lwork [Slap_S] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
| sysv_min_lwork [Slap_D] | sysv_min_lwork () computes the minimum length of workspace for sysv
routine.
|
| sysv_opt_lwork [Slap_C] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
| sysv_opt_lwork [Slap_Z] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
| sysv_opt_lwork [Slap_S] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
| sysv_opt_lwork [Slap_D] | sysv_opt_lwork ?up a b computes the optimal length of workspace for sysv
routine.
|
| sytrf [Slap_C] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
| sytrf [Slap_Z] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
| sytrf [Slap_S] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
| sytrf [Slap_D] | sytrf ?up ?ipiv ?work a factorizes symmetric matrix a using the
Bunch-Kaufman diagonal pivoting method:
|
| sytrf_min_lwork [Slap_C] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
| sytrf_min_lwork [Slap_Z] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
| sytrf_min_lwork [Slap_S] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
| sytrf_min_lwork [Slap_D] | sytrf_min_lwork () computes the minimum length of workspace for sytrf
routine.
|
| sytrf_opt_lwork [Slap_C] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
| sytrf_opt_lwork [Slap_Z] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
| sytrf_opt_lwork [Slap_S] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
| sytrf_opt_lwork [Slap_D] | sytrf_opt_lwork ?up a computes the optimal length of workspace for sytrf
routine.
|
| sytri [Slap_C] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
| sytri [Slap_Z] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
| sytri [Slap_S] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
| sytri [Slap_D] | sytri ?up ?ipiv ?work a computes the inverse of symmetric matrix a using
the Bunch-Kaufman diagonal pivoting method:
|
| sytri_min_lwork [Slap_C] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
| sytri_min_lwork [Slap_Z] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
| sytri_min_lwork [Slap_S] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
| sytri_min_lwork [Slap_D] | sytri_min_lwork () computes the minimum length of workspace for sytri
routine.
|
| sytrs [Slap_C] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
| sytrs [Slap_Z] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
| sytrs [Slap_S] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
| sytrs [Slap_D] | sytrs ?up ?ipiv a b solves systems of linear equations a * x = b where
a is a symmetric matrix, each column of matrix b is the r.h.s.
|
T | |
| tbtrs [Slap_C] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| tbtrs [Slap_Z] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| tbtrs [Slap_S] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| tbtrs [Slap_D] | tbtrs ~kd ?up ~trans ?diag ab b solves systems of linear equations
OP(A) * x = b where A is a triangular band matrix with kd subdiagonals,
each column of matrix b is the r.h.s vector, and each column of matrix x
is the corresponding solution.
|
| ten [Slap_size] | |
| three [Slap_size] | |
| tl [Slap_C.Vec] | |
| tl [Slap_Z.Vec] | |
| tl [Slap_S.Vec] | |
| tl [Slap_D.Vec] | |
| tl [Slap_vec] | |
| tl_dyn [Slap_C.Vec] | |
| tl_dyn [Slap_Z.Vec] | |
| tl_dyn [Slap_S.Vec] | |
| tl_dyn [Slap_D.Vec] | |
| tl_dyn [Slap_vec] | |
| to_array [Slap_C.Mat] | to_array a
|
| to_array [Slap_C.Vec] | to_array x
|
| to_array [Slap_Z.Mat] | to_array a
|
| to_array [Slap_Z.Vec] | to_array x
|
| to_array [Slap_S.Mat] | to_array a
|
| to_array [Slap_S.Vec] | to_array x
|
| to_array [Slap_D.Mat] | to_array a
|
| to_array [Slap_D.Vec] | to_array x
|
| to_array [Slap_mat] | to_array a
|
| to_array [Slap_vec] | to_array x
|
| to_bigarray [Slap_C.Mat] | to_bigarray a
|
| to_bigarray [Slap_C.Vec] | to_bigarray x
|
| to_bigarray [Slap_Z.Mat] | to_bigarray a
|
| to_bigarray [Slap_Z.Vec] | to_bigarray x
|
| to_bigarray [Slap_S.Mat] | to_bigarray a
|
| to_bigarray [Slap_S.Vec] | to_bigarray x
|
| to_bigarray [Slap_D.Mat] | to_bigarray a
|
| to_bigarray [Slap_D.Vec] | to_bigarray x
|
| to_bigarray [Slap_mat] | to_bigarray a
|
| to_bigarray [Slap_vec] | to_bigarray x
|
| to_int [Slap_size] |
Return the integer correponding to the given size.
|
| to_list [Slap_C.Mat] | to_list a
|
| to_list [Slap_C.Vec] | to_list x
|
| to_list [Slap_Z.Mat] | to_list a
|
| to_list [Slap_Z.Vec] | to_list x
|
| to_list [Slap_S.Mat] | to_list a
|
| to_list [Slap_S.Vec] | to_list x
|
| to_list [Slap_D.Mat] | to_list a
|
| to_list [Slap_D.Vec] | to_list x
|
| to_list [Slap_mat] | to_list a
|
| to_list [Slap_vec] | to_list x
|
| tpmv [Slap_C] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
| tpmv [Slap_Z] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
| tpmv [Slap_S] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
| tpmv [Slap_D] | tpmv ~trans ?diag ?up a x executes x := OP(a) * x
where a is a packed triangular matrix.
|
| tpsv [Slap_C] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
| tpsv [Slap_Z] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
| tpsv [Slap_S] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
| tpsv [Slap_D] | tpsv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b where a is a packed triangular
matrix.
|
| trace [Slap_C.Mat] | trace a
|
| trace [Slap_Z.Mat] | trace a
|
| trace [Slap_S.Mat] | trace a
|
| trace [Slap_D.Mat] | trace a
|
| trans [Slap_common] |
Transpose of a matrix.
|
| transpose_copy [Slap_C.Mat] | transpose_copy ?b a copies the transpose of a into b.
|
| transpose_copy [Slap_Z.Mat] | transpose_copy ?b a copies the transpose of a into b.
|
| transpose_copy [Slap_S.Mat] | transpose_copy ?b a copies the transpose of a into b.
|
| transpose_copy [Slap_D.Mat] | transpose_copy ?b a copies the transpose of a into b.
|
| trmm [Slap_C] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
| trmm [Slap_Z] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
| trmm [Slap_S] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
| trmm [Slap_D] | trmm ~side ?up ~transa ?diag ?alpha ~a b executes
|
| trmv [Slap_C] | trmv ~trans ?diag ?up a x executes x := OP(a) * x.
|
| trmv [Slap_Z] | trmv ~trans ?diag ?up a x executes x := OP(a) * x.
|
| trmv [Slap_S] | trmv ~trans ?diag ?up a x executes x := OP(a) * x.
|
| trmv [Slap_D] | trmv ~trans ?diag ?up a x executes x := OP(a) * x.
|
| trsm [Slap_C] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
| trsm [Slap_Z] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
| trsm [Slap_S] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
| trsm [Slap_D] | trsm ~side ?up ~transa ?diag ?alpha ~a b solves a system of linear
equations
|
| trsv [Slap_C] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b.
|
| trsv [Slap_Z] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b.
|
| trsv [Slap_S] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b.
|
| trsv [Slap_D] | trmv ~trans ?diag ?up a b solves linear system OP(a) * x = b
and destructively assigns x to b.
|
| trtri [Slap_C] | trtri ?up ?diag a computes the inverse of triangular matrix a.
|
| trtri [Slap_Z] | trtri ?up ?diag a computes the inverse of triangular matrix a.
|
| trtri [Slap_S] | trtri ?up ?diag a computes the inverse of triangular matrix a.
|
| trtri [Slap_D] | trtri ?up ?diag a computes the inverse of triangular matrix a.
|
| trtrs [Slap_C] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n, each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
| trtrs [Slap_Z] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n, each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
| trtrs [Slap_S] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n, each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
| trtrs [Slap_D] | trtrs ?up trans ?diag a b solves systems of linear equations
OP(a) * x = b where a is a triangular matrix of order 'n, each column
of matrix b is the r.h.s vector, and each column of matrix x is the
corresponding solution.
|
| two [Slap_size] | |
U | |
| ungeband [Slap_C.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
| ungeband [Slap_Z.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
| ungeband [Slap_S.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
| ungeband [Slap_D.Mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
| ungeband [Slap_mat] | ungeband m kl ku ?a b converts matrix b stored in band storage into
a matrix stored in the normal order.
|
| unit [Slap_common] |
A matrix is unit triagular.
|
| unluband [Slap_C.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
| unluband [Slap_Z.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
| unluband [Slap_S.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
| unluband [Slap_D.Mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
| unluband [Slap_mat] | unluband m kl ku ?a ab converts matrix ab stored in band storage for LU
factorization into a matrix stored in the normal order.
|
| unpacked [Slap_C.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x.
|
| unpacked [Slap_Z.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x.
|
| unpacked [Slap_S.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x.
|
| unpacked [Slap_D.Mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from packed-storage-format vector x.
|
| unpacked [Slap_mat] | unpacked ?up ?fill_num ?a x generates an upper or lower triangular matrix
from x stored in packed storage.
|
| unpacked [Slap_size] | unpacked n computes the inverse of the packed storage size, i.e.,
unpacked (packed n) = n for all n.
|
| unsafe_get [Slap_C.Mat] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_C.Vec] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_Z.Mat] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_Z.Vec] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_S.Mat] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_S.Vec] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_D.Mat] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_D.Vec] |
Like
get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_mat] |
Like
Slap_mat.get_dyn, but size checking is not always performed.
|
| unsafe_get [Slap_vec] |
Like
Slap_vec.get_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_C.Mat] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_C.Vec] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_Z.Mat] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_Z.Vec] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_S.Mat] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_S.Vec] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_D.Mat] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_D.Vec] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_mat] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_array [Slap_vec] |
Like
of_array_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_C.Mat] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_C.Vec] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_Z.Mat] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_Z.Vec] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_S.Mat] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_S.Vec] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_D.Mat] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_D.Vec] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_mat] |
Like
of_bigarray_dyn, but size checking is not always performed.
|
| unsafe_of_bigarray [Slap_vec] |
Like
unsafe_of_bigarray, but size checking is not always performed.
|
| unsafe_of_int [Slap_size] |
Like
of_int_dyn, but dynamic size checking is not performed.
|
| unsafe_of_list [Slap_C.Mat] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_C.Vec] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_Z.Mat] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_Z.Vec] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_S.Mat] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_S.Vec] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_D.Mat] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_D.Vec] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_mat] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_of_list [Slap_vec] |
Like
of_list_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_C.Mat] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_C.Vec] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_Z.Mat] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_Z.Vec] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_S.Mat] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_S.Vec] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_D.Mat] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_D.Vec] |
Like
set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_mat] |
Like
Slap_mat.set_dyn, but size checking is not always performed.
|
| unsafe_set [Slap_vec] |
Like
Slap_vec.set_dyn, but size checking is not always performed.
|
| unsyband [Slap_C.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
| unsyband [Slap_Z.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
| unsyband [Slap_S.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
| unsyband [Slap_D.Mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
| unsyband [Slap_mat] | unsyband kd ?a b converts matrix b stored in symmetric or Hermitian
band storage into a matrix stored in the normal order.
|
| upper [Slap_common] |
Using the upper triangular (or trapezoidal) part of a matrix.
|
| upper_lower [Slap_common] |
Using both of the upper and lower triangular parts (i.e., all elements) of a
matrix.
|
V | |
| value [Slap_C.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec.
|
| value [Slap_C.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat.
|
| value [Slap_C.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec.
|
| value [Slap_C.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec.
|
| value [Slap_Z.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec.
|
| value [Slap_Z.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat.
|
| value [Slap_Z.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec.
|
| value [Slap_Z.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec.
|
| value [Slap_S.SYEVR_RESULT] | |
| value [Slap_S.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec.
|
| value [Slap_S.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat.
|
| value [Slap_S.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec.
|
| value [Slap_S.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec.
|
| value [Slap_D.SYEVR_RESULT] | |
| value [Slap_D.Mat.DSCMAT] |
A dynamically-sized discrete matrix with type like
exists m, n. (m, n, dsc) vec.
|
| value [Slap_D.Mat.CNTMAT] |
A dynamically-sized contiguous matrix with type like
exists m, n. (m, n, 'cnt) mat.
|
| value [Slap_D.Vec.DSCVEC] |
A dynamically-sized discrete vector with type like
exists n. (n, dsc) vec.
|
| value [Slap_D.Vec.CNTVEC] |
A dynamically-sized contiguous vector with type like
exists n. (n, 'cnt) vec.
|
| value [Slap_size.SIZE] |
A dynamically-decided size with type like
exists n. n Size.t.
|
| version [Slap_version] |
The version number of SLAP:
"major.minor.micro"
|
| vertical_default [Slap_io.Context] |
- If
Some n, the first n rows and the last n rows of a table are
printed.
|
Z | |
| zero [Slap_size] | |
| zmxy [Slap_C.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
|
| zmxy [Slap_Z.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
|
| zmxy [Slap_S.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
|
| zmxy [Slap_D.Vec] | zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn).
|
| zpxy [Slap_C.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
|
| zpxy [Slap_Z.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
|
| zpxy [Slap_S.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
|
| zpxy [Slap_D.Vec] | zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn).
|