module Vec: sig
.. end
module type CNTVEC = sig
.. end
The signature of modules containing dynamically-sized contiguous vectors.
module type DSCVEC = sig
.. end
The signature of modules containing dynamically-sized discrete vectors.
val cnt : ('n, Slap_misc.cnt) Slap_Z.vec -> ('n, 'cnt) Slap_Z.vec
Recover polymorphism of the fourth type parameter.
Creation of vectors
val empty : (Slap_size.z, 'cnt) Slap_Z.vec
An empty vector.
val create : 'n Slap_size.t -> ('n, 'cnt) Slap_Z.vec
create n
Returns a fresh n
-dimensional vector (not initialized).
val make : 'n Slap_size.t -> Slap_Z.num_type -> ('n, 'cnt) Slap_Z.vec
make n a
Returns a fresh n
-dimensional vector initialized with a
.
val make0 : 'n Slap_size.t -> ('n, 'cnt) Slap_Z.vec
zeros n
Returns a fresh n
-dimensional vector initialized with 0
.
val make1 : 'n Slap_size.t -> ('n, 'cnt) Slap_Z.vec
make1 n
Returns a fresh n
-dimensional vector initialized with 1
.
val init : 'n Slap_size.t -> (int -> Slap_Z.num_type) -> ('n, 'cnt) Slap_Z.vec
init n f
Returns a fresh vector (f 1, ..., f n)
with n
elements.
Accessors
val dim : ('n, 'cd) Slap_Z.vec -> 'n Slap_size.t
dim x
Returns the dimension of the vector x
.
val get_dyn : ('n, 'cd) Slap_Z.vec -> int -> Slap_Z.num_type
get_dyn x i
Returns the i
-th element of the vector x
.
val set_dyn : ('n, 'cd) Slap_Z.vec -> int -> Slap_Z.num_type -> unit
set_dyn x i a
assigns a
to the i
-th element of the vector x
.
val unsafe_get : ('n, 'cd) Slap_Z.vec -> int -> Slap_Z.num_type
Like get_dyn
, but size checking is not always performed.
val unsafe_set : ('n, 'cd) Slap_Z.vec -> int -> Slap_Z.num_type -> unit
Like set_dyn
, but size checking is not always performed.
val replace_dyn : ('n, 'cd) Slap_Z.vec -> int -> (Slap_Z.num_type -> Slap_Z.num_type) -> unit
replace_dyn v i f
is set_dyn v i (f (get_dyn v i))
.
Basic operations
val cons : ?y:('n Slap_size.s, 'y_cd) Slap_Z.vec ->
Slap_Z.num_type ->
('n, 'x_cd) Slap_Z.vec -> ('n Slap_size.s, 'y_cd) Slap_Z.vec
cons ?y e x
adds element e
at the beginning of vector x
, and copies
it into y
.
Since 4.0.0
Returns the vector y
, which is overwritten.
y
: default = a fresh vector.
val hd : ('n Slap_size.s, 'x_cd) Slap_Z.vec -> Slap_Z.num_type
Since 4.0.0
Returns the first element of a given vector. (typesafe)
val hd_dyn : ('n, 'x_cd) Slap_Z.vec -> Slap_Z.num_type
Since 4.0.0
Returns the first element of a given vector.
val last : ('n Slap_size.s, 'x_cd) Slap_Z.vec -> Slap_Z.num_type
Since 4.0.0
Returns the last element of a given vector. (typesafe)
val last_dyn : ('n, 'x_cd) Slap_Z.vec -> Slap_Z.num_type
Since 4.0.0
Returns the last element of a given vector.
val tl : ?y:('n, 'y_cd) Slap_Z.vec ->
('n Slap_size.s, 'x_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec
Since 4.0.0
Returns a given vector without the first element. (typesafe)
val tl_dyn : ?y:('n Slap_size.p, 'y_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n Slap_size.p, 'x_cd) Slap_Z.vec
Since 4.0.0
Returns a given vector without the first element.
val inits : ?y:('n, 'y_cd) Slap_Z.vec ->
('n Slap_size.s, 'x_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec
Since 4.0.0
Returns a given vector without the first element. (typesafe)
This is the same as init in Haskell.
val inits_dyn : ?y:('n Slap_size.p, 'y_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n Slap_size.p, 'x_cd) Slap_Z.vec
Since 4.0.0
Returns a given vector without the first element.
This is the same as init in Haskell.
val copy : ?y:('n, 'y_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec
copy ?y x
copies the vector x
to the vector y
with the BLAS-1
function [sdcz]copy
.
Returns the vector y
, which is overwritten.
y
: default = a fresh vector.
val fill : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type -> unit
Fill the given vector with the given value.
val append : ('m, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> (('m, 'n) Slap_size.add, 'cnt) Slap_Z.vec
Concatenate two vectors.
val shared_rev : ('n, 'cd) Slap_Z.vec -> ('n, 'cd) Slap_Z.vec
shared_rev (x1, x2, ..., xn)
Returns reversed vector (xn, ..., x2, x1)
. The data are shared.
val rev : ('n, 'cd) Slap_Z.vec -> ('n, 'cd) Slap_Z.vec
rev (x1, x2, ..., xn)
Returns reversed vector (xn, ..., x2, x1)
. The data are NOT shared.
Type conversion
val to_array : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type array
to_array x
Returns the array of all the elements of the vector x
.
val of_array_dyn : 'n Slap_size.t -> Slap_Z.num_type array -> ('n, 'cnt) Slap_Z.vec
of_array_dyn n [|a1; ...; an|]
Raises Invalid_argument
the length of the given array is not equal to n
.
Returns a fresh vector (a1, ..., an)
.
val of_array : Slap_Z.num_type array -> (module Slap_Z.Vec.CNTVEC)
module V = (val of_array [|a1; ...; an|] : CNTVEC)
Returns module V
containing the vector V.value
(= (a1, ..., an)
) that
has the type (V.n, 'cnt) vec
with a generative phantom type V.n
as a
package of an existential quantified sized type like
exists n. (n, 'cnt) vec
.
module Of_array: functor (
X
:
sig
end
) ->
CNTVEC
A functor version of of_array
.
val unsafe_of_array : 'n Slap_size.t -> Slap_Z.num_type array -> ('n, 'cnt) Slap_Z.vec
Like of_array_dyn
, but size checking is not always performed.
Since 1.0.0
val to_list : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type list
to_list x
Returns the list of all the elements of the vector x
.
val of_list_dyn : 'n Slap_size.t -> Slap_Z.num_type list -> ('n, 'cnt) Slap_Z.vec
of_list_dyn n [a1; ...; an]
Raises Invalid_argument
the length of the given list is not equal to n
.
Returns a fresh vector (a1, ..., an)
.
val of_list : Slap_Z.num_type list -> (module Slap_Z.Vec.CNTVEC)
module V = (val of_list [a1; ...; an] : CNTVEC)
Returns module V
containing the vector V.value
(= (a1, ..., an)
) that
has the type (V.n, 'cnt) vec
with a generative phantom type V.n
as a
package of an existential quantified sized type like
exists n. (n, 'cnt) vec
.
module Of_list: functor (
X
:
sig
end
) ->
CNTVEC
A functor version of of_list
.
val unsafe_of_list : 'n Slap_size.t -> Slap_Z.num_type list -> ('n, 'cnt) Slap_Z.vec
Like of_list_dyn
, but size checking is not always performed.
Since 1.0.0
val to_bigarray : ('n, 'cd) Slap_Z.vec ->
(Slap_Z.num_type, Slap_Z.prec, Bigarray.fortran_layout) Bigarray.Array1.t
to_bigarray x
Returns the big array of all the elements of the vector x
.
val of_bigarray_dyn : ?share:bool ->
'n Slap_size.t ->
(Slap_Z.num_type, Slap_Z.prec, Bigarray.fortran_layout) Bigarray.Array1.t ->
('n, 'cnt) Slap_Z.vec
of_bigarray_dyn ?share n ba
Raises Invalid_argument
the length of the given big array is not equal to
n
.
Returns a fresh vector of all the elements of big array ba
.
share
: true
if data are shared. (default = false
)
val of_bigarray : ?share:bool ->
(Slap_Z.num_type, Slap_Z.prec, Bigarray.fortran_layout) Bigarray.Array1.t ->
(module Slap_Z.Vec.CNTVEC)
module V = (val of_bigarray ?share n ba : CNTVEC)
Returns module V
containing the vector V.value
(of all elements of big
array ba
) that has the type (V.n, 'cnt) vec
with a generative phantom
type V.n
as a package of an existential quantified sized type like
exists n. (n, 'cnt) vec
.
share
: true
if data are shared. (default = false
)
module Of_bigarray: functor (
X
:
sig
end
) ->
CNTVEC
A functor version of of_bigarray
.
val unsafe_of_bigarray : ?share:bool ->
'n Slap_size.t ->
(Slap_Z.num_type, Slap_Z.prec, Bigarray.fortran_layout) Bigarray.Array1.t ->
('n, 'cnt) Slap_Z.vec
Like of_bigarray_dyn
, but size checking is not always performed.
Since 1.0.0
val of_array_c : Slap_Z.num_type array -> (Slap_Z.num_type, Slap_Z.prec, 'cnt) Slap_vec.dyn
let Slap.Vec.VEC n = of_array_c [|a1; ...; an|]
Since 4.0.0
Returns a constructor VEC
that has a vector (a1, ..., an)
that has the
existential quantified sized type
exists n. (n, 'num, 'prec, 'cnt_or_dsc) Vec.t
.
"c" of of_array_c
means a "c"onstructor of GADT. This function is
available in OCaml 4.00 or above.
val of_list_c : Slap_Z.num_type list -> (Slap_Z.num_type, Slap_Z.prec, 'cnt) Slap_vec.dyn
let Slap.Vec.VEC n = of_list_c [a1; ...; an]
Since 4.0.0
Returns a constructor VEC
that has a vector (a1, ..., an)
that has the
existential quantified sized type
exists n. (n, 'num, 'prec, 'cnt_or_dsc) Vec.t
.
"c" of of_list_c
means a "c"onstructor of GADT. This function is available
in OCaml 4.00 or above.
val of_bigarray_c : ?share:bool ->
(Slap_Z.num_type, Slap_Z.prec, Bigarray.fortran_layout) Bigarray.Array1.t ->
(Slap_Z.num_type, Slap_Z.prec, 'cnt) Slap_vec.dyn
let Slap.Vec.VEC n = of_bigarray_c ?share ba
Since 4.0.0
Returns a constructor VEC
that has a vector (of all the elements of big
array ba
) that has the existential quantified sized type
exists n. (n, 'num, 'prec, 'cnt_or_dsc) Vec.t
.
"c" of of_bigarray_c
means a "c"onstructor of GADT. This function is
available in OCaml 4.00 or above.
share
: true
if data are shared. (default = false
)
Iterators
val map : (Slap_Z.num_type -> Slap_Z.num_type) ->
?y:('n, 'y_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec
map f ?y (x1, ..., xn)
is (f x1, ..., f xn)
.
Returns the vector y
, which is overwritten.
y
: default = a fresh vector.
val mapi : (int -> Slap_Z.num_type -> Slap_Z.num_type) ->
?y:('n, 'y_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec
mapi f ?y (x1, ..., xn)
is (f 1 x1, ..., f n xn)
with
the vector's dimension n
.
Returns the vector y
, which is overwritten.
y
: default = a fresh vector.
val fold_left : ('accum -> Slap_Z.num_type -> 'accum) ->
'accum -> ('n, 'cd) Slap_Z.vec -> 'accum
fold_left f init (x1, x2, ..., xn)
is
f (... (f (f init x1) x2) ...) xn
.
val fold_lefti : (int -> 'accum -> Slap_Z.num_type -> 'accum) ->
'accum -> ('n, 'cd) Slap_Z.vec -> 'accum
fold_lefti f init (x1, x2, ..., xn)
is
f n (... (f 2 (f 1 init x1) x2) ...) xn
with the vector's dimension n
.
val fold_right : (Slap_Z.num_type -> 'accum -> 'accum) ->
('n, 'cd) Slap_Z.vec -> 'accum -> 'accum
fold_right f (x1, x2, ..., xn) init
is
f x1 (f x2 (... (f xn init) ...))
.
val fold_righti : (int -> Slap_Z.num_type -> 'accum -> 'accum) ->
('n, 'cd) Slap_Z.vec -> 'accum -> 'accum
fold_righti f (x1, x2, ..., xn) init
is
f 1 x1 (f 2 x2 (... (f n xn init) ...))
with the vector's dimension n
.
val replace_all : ('n, 'cd) Slap_Z.vec -> (Slap_Z.num_type -> Slap_Z.num_type) -> unit
replace_all x f
modifies the vector x
in place
-- the i
-th element xi
of x
will be set to f xi
.
val replace_alli : ('n, 'cd) Slap_Z.vec -> (int -> Slap_Z.num_type -> Slap_Z.num_type) -> unit
replace_alli x f
modifies the vector x
in place
-- the i
-th element xi
of x
will be set to f i xi
.
val iter : (Slap_Z.num_type -> unit) -> ('n, 'cd) Slap_Z.vec -> unit
iter f (x1, x2, ..., xn)
is f x1; f x2; ...; f xn
.
val iteri : (int -> Slap_Z.num_type -> unit) -> ('n, 'cd) Slap_Z.vec -> unit
iteri f (x1, x2, ..., xn)
is f 1 x1; f 2 x2; ...; f n xn
.
Iterators on two vectors
val map2 : (Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type) ->
?z:('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
map2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn)
is
(f x1 y1, f x2 y2, ..., f xn yn)
.
Returns the vector z
, which is overwritten.
z
: default = a fresh vector.
val mapi2 : (int -> Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type) ->
?z:('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
mapi2 f ?z (x1, x2, ..., xn) (y1, y2, ..., yn)
is
(f 1 x1 y1, f 2 x2 y2, ..., f n xn yn)
with the vectors' dimension n
.
Returns the vector z
, which is overwritten.
z
: default = a fresh vector.
val fold_left2 : ('accum -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum) ->
'accum -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> 'accum
fold_left2 f init (x1, x2, ..., xn) (y1, y2, ..., yn)
is
f (... (f (f init x1 y1) x2 y2) ...) xn yn
.
val fold_lefti2 : (int -> 'accum -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum) ->
'accum -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> 'accum
fold_lefti2 f init (x1, x2, ..., xn) (y1, y2, ..., yn)
is
f n (... (f 2 (f 1 init x1 y1) x2 y2) ...) xn yn
with the vectors'
dimension n
.
val fold_right2 : (Slap_Z.num_type -> Slap_Z.num_type -> 'accum -> 'accum) ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> 'accum -> 'accum
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init
is
f x1 y1 (f x2 y2 (... (f xn yn init) ...))
.
val fold_righti2 : (int -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum -> 'accum) ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> 'accum -> 'accum
fold_righti2 f (x1, x2, ..., xn) (y1, y2, ..., yn) init
is
f 1 x1 y1 (f 2 x2 y2 (... (f n xn yn init) ...))
with the vectors'
dimension n
.
val iter2 : (Slap_Z.num_type -> Slap_Z.num_type -> unit) ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> unit
iter2 f (x1, x2, ..., xn) (y1, y2, ..., yn)
is
f x1 y1; f x2 y2; ...; f xn yn
.
val iteri2 : (int -> Slap_Z.num_type -> Slap_Z.num_type -> unit) ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> unit
iteri2 f (x1, x2, ..., xn) (y1, y2, ..., yn)
is
f 1 x1 y1; f 2 x2 y2; ...; f n xn yn
.
Iterators on three vectors
val map3 : (Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type) ->
?w:('n, 'w_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> ('n, 'w_cd) Slap_Z.vec
map3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is
(f x1 y1 z1, f x2 y2 z2, ..., f xn yn zn)
.
Returns the vector w
, which is overwritten.
w
: default = a fresh vector.
val mapi3 : (int ->
Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type) ->
?w:('n, 'w_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> ('n, 'w_cd) Slap_Z.vec
mapi3 f ?w (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is
(f 1 x1 y1 z1, f 2 x2 y2 z2, ..., f n xn yn zn)
with the vectors'
dimension n
.
Returns the vector w
, which is overwritten.
w
: default = a fresh vector.
val fold_left3 : ('accum -> Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum) ->
'accum ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> 'accum
fold_left3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f (... (f (f init x1 y1 z1) x2 y2 z2) ...) xn yn zn
.
val fold_lefti3 : (int ->
'accum -> Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum) ->
'accum ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> 'accum
fold_lefti3 f init (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is f n (... (f 2 (f 1 init x1 y1 z1) x2 y2 z2) ...) xn yn zn
with the
vectors' dimension n
.
val fold_right3 : (Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum -> 'accum) ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> 'accum -> 'accum
fold_right3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f x1 y1 z1 (f x2 y2 z2 (... (f xn yn zn init) ...))
.
val fold_righti3 : (int ->
Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> 'accum -> 'accum) ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> 'accum -> 'accum
fold_righti3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn) init
is f 1 x1 y1 z1 (f 2 x2 y2 z2 (... (f n xn yn zn init) ...))
with the vectors' dimension n
.
val iter3 : (Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> unit) ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> unit
iter3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is
f x1 y1 z1; f x2 y2 z2; ...; f xn yn zn
.
val iteri3 : (int -> Slap_Z.num_type -> Slap_Z.num_type -> Slap_Z.num_type -> unit) ->
('n, 'x_cd) Slap_Z.vec ->
('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec -> unit
iteri3 f (x1, x2, ..., xn) (y1, y2, ..., yn) (z1, z2, ..., zn)
is
f 1 x1 y1 z1; f 2 x2 y2 z2; ...; f n xn yn zn
.
Scanning
val for_all : (Slap_Z.num_type -> bool) -> ('n, 'cd) Slap_Z.vec -> bool
for_all p (x1, x2, ..., xn)
is (p x1) && (p x2) && ... && (p xn)
.
Returns true
if and only if all elements of the given vector satisfy
the predicate p
.
val exists : (Slap_Z.num_type -> bool) -> ('n, 'cd) Slap_Z.vec -> bool
exists p (x1, x2, ..., xn)
is (p x1) || (p x2) || ... || (p xn)
.
Returns true
if and only if at least one element of the given vector
satisfies the predicate p
.
val for_all2 : (Slap_Z.num_type -> Slap_Z.num_type -> bool) ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> bool
for_all2 p (x1, x2, ..., xn) (y1, y2, ..., yn)
is
(p x1 y1) && (p x2 y2) && ... && (p xn yn)
.
Returns true
if and only if all elements of the given two vectors
satisfy the predicate p
.
val exists2 : (Slap_Z.num_type -> Slap_Z.num_type -> bool) ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> bool
exists2 p (x1, x2, ..., xn) (y1, y2, ..., yn)
is
(p x1 y1) || (p x2 y2) || ... || (p xn yn)
.
Returns true
if and only if at least one pair of elements of the given two
vectors satisfies the predicate p
.
Arithmetic operations
val max : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type
max x
Returns the largest element in x
. NaN
s is ignored. If only NaN
s are
encountered, the negative infinity
value is returned.
val min : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type
min x
Returns the smallest element in x
. NaN
s is ignored. If only NaN
s are
encountered, the positive infinity
value is returned.
val sum : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type
sum x
Returns the sum of all elements in x
.
val prod : ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type
prod x
Returns the product of all elements in x
.
val add_const : Slap_Z.num_type ->
?y:('n, 'y_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec
add_const c ?y x
adds constant value c
to all elements in vector x
.
Since 0.1.0
Returns the vector y
, which is overwritten.
val sqr_nrm2 : ?stable:bool -> ('n, 'cd) Slap_Z.vec -> float
sqr_nrm2 ?stable x
computes the square of the 2-norm (Euclidean norm) of
vector x
.
stable
: default =
false
.
- If
stable
= true
, BLAS function nrm2
is used;
- If
stable
= false
, BLAS function dot
is used instead for greatly
improved performance.
val ssqr : ?c:Slap_Z.num_type -> ('n, 'cd) Slap_Z.vec -> Slap_Z.num_type
ssqr ?c (x1, x2, ..., xn)
computes the sum of squared differences of the
elements in the given vector from scalar value c
:
(x1 - c)^2 + (x2 - c)^2 + ... + (xn - c)^2
.
c
: default = 0.0
.
val sort : ?cmp:(Slap_Z.num_type -> Slap_Z.num_type -> int) ->
?decr:bool ->
?p:('n, 'p_cd) Slap_common.int_vec -> ('n, 'x_cd) Slap_Z.vec -> unit
sort ?cmp ?decr ?p x
sorts the elements in vector x
in increasing order
according to the comparison function cmp
.
cmp
: default = the usual order (on real numbers) or the lexicographic
order (on complex numbers).
cmp a b < 0
iff a < b
;
cmp a b = 0
iff a = b
;
cmp a b > 0
iff a > b
.
NaN
s must be considered larger than any other value.
decr
: sort in decreasing order.
p
: If p
is passed, x
is unchanged and the permutation is stored
into p
. (default = None
.)
val neg : ?y:('n, 'y_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec
neg ?y (x1, x2, ..., xn)
returns (-x1, -x2, ..., -xn)
.
Returns the vector y
, which is overwritten.
val reci : ?y:('n, 'y_cd) Slap_Z.vec -> ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec
reci ?y (x1, x2, ..., xn)
returns (1 / x1, 1 / x2, ..., 1 / xn)
.
Since 0.1.0
Returns the vector y
, which is overwritten.
val add : ?z:('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
add ?z (x1, x2, ..., xn) (y1, y2, ..., yn)
returns
(x1 + y1, x2 + y2, ..., xn + yn)
.
Returns the vector z
, which is overwritten.
val sub : ?z:('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
sub ?z (x1, x2, ..., xn) (y1, y2, ..., yn)
returns
(x1 - y1, x2 - y2, ..., xn - yn)
.
Returns the vector z
, which is overwritten.
val mul : ?z:('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
mul ?z (x1, x2, ..., xn) (y1, y2, ..., yn)
returns
(x1 * y1, x2 * y2, ..., xn * yn)
.
Returns the vector z
, which is overwritten.
val div : ?z:('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
div ?z (x1, x2, ..., xn) (y1, y2, ..., yn)
returns
(x1 / y1, x2 / y2, ..., xn / yn)
.
Returns the vector z
, which is overwritten.
val zpxy : ('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
zpxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 + x1 * y1, z2 + x2 * y2, ..., zn + xn * yn)
.
This function is useful for convolutions.
Since 0.1.0
Returns the vector z
, which is overwritten.
val zmxy : ('n, 'z_cd) Slap_Z.vec ->
('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> ('n, 'z_cd) Slap_Z.vec
zmxy (z1, z2, ..., zn) (x1, x2, ..., xn) (y1, y2, ..., yn)
returns (z1 - x1 * y1, z2 - x2 * y2, ..., zn - xn * yn)
.
This function is useful for convolutions.
Since 0.1.0
Returns the vector z
, which is overwritten.
val ssqr_diff : ('n, 'x_cd) Slap_Z.vec -> ('n, 'y_cd) Slap_Z.vec -> Slap_Z.num_type
ssqr_diff x y
returns the sum of squared differences of the elements of
vectors x
and y
.
Subvectors
val subcntvec_dyn : 'm Slap_size.t ->
?ofsx:int -> ('n, Slap_misc.cnt) Slap_Z.vec -> ('m, 'cnt) Slap_Z.vec
subcntvec_dyn m ?ofsx x
Raises Invalid_argument
m
and ofsx
do not designate a valid subvector of
x
.
Returns a subvector of the contiguous vector x
.
The i
-th element of it refers (ofsx+i-1)
-th element of x
.
The data are shared.
ofsx
: default = 1
val subdscvec_dyn : 'm Slap_size.t ->
?ofsx:int ->
?incx:int -> ('n, 'cd) Slap_Z.vec -> ('m, Slap_misc.dsc) Slap_Z.vec
subdscvec_dyn m ?ofsx ?incx x
Raises Invalid_argument
m
, ofsx
and incx
do not designate
a valid subvector of x
.
Returns a subvector of the vector x
.
The i
-th element of it refers (ofsx+(i-1)*incx)
-th element of x
.
The data are shared.
val subvec_dyn : 'm Slap_size.t ->
?ofsx:int ->
?incx:int -> ('n, 'cd) Slap_Z.vec -> ('m, Slap_misc.dsc) Slap_Z.vec
An alias of subdscvec_dyn
.
Creation of vectors
val random : ?rnd_state:Random.State.t ->
?re_from:float ->
?re_range:float ->
?im_from:float -> ?im_range:float -> 'n Slap_size.t -> ('n, 'cnt) Slap_Z.vec
random ?rnd_state ?from ?range n
creates a n
-dimensional vector randomly
initialized with the uniform distribution between re_from
/im_from
and
re_from+re_range
/im_from+im_range
for real and imaginary parts,
respectively.
rnd_state
: default = Random.get_state ()
.
re_from
: default = -1.0
.
re_range
: default = 2.0
.
im_from
: default = -1.0
.
im_range
: default = 2.0
.