module Slap_D:sig
..end
Slap_common.normal
and
Slap_common.trans
).
For complex matrices, Slap_common.conjtr
is also offered, hence the name.typeprec =
Bigarray.float64_elt
typenum_type =
float
type('indim, 'outdim, [< `N | `T ])
trans3 =('indim, 'outdim, [< `N | `T ] as 'a) Slap_common.trans2
Slap_common.normal
and
Slap_common.trans
).
For complex matrices, Slap_common.conjtr
is also offered, hence the name.type('n, 'cnt_or_dsc)
vec =('n, num_type, prec, 'cnt_or_dsc) Slap_vec.t
type('m, 'n, 'cnt_or_dsc)
mat =('m, 'n, num_type, prec, 'cnt_or_dsc) Slap_mat.t
typerprec =
Bigarray.float64_elt
type('n, 'cnt_or_dsc)
rvec =('n, float, rprec, 'cnt_or_dsc) Slap_vec.t
val prec : (num_type, prec) Bigarray.kind
val rprec : (float, rprec) Bigarray.kind
module Vec:sig
..end
module Mat:sig
..end
val pp_num : Format.formatter -> num_type -> unit
val pp_vec : Format.formatter -> ('n, 'cnt_or_dsc) vec -> unit
val pp_mat : Format.formatter -> ('m, 'n, 'cnt_or_dsc) mat -> unit
val swap : ('n, 'x_cd) vec -> ('n, 'y_cd) vec -> unit
swap x y
swaps elements in x
and y
.val scal : num_type -> ('n, 'cd) vec -> unit
scal c x
multiplies all elements in x
by scalar value c
,
and destructively assigns the result to x
.val copy : ?y:('n, 'y_cd) vec -> ('n, 'x_cd) vec -> ('n, 'y_cd) vec
copy ?y x
copies x
into y
.y
, which is overwritten.val nrm2 : ('n, 'cd) vec -> float
nrm2 x
retruns the L2 norm of vector x
: ||x||
.val axpy : ?alpha:num_type ->
('n, 'x_cd) vec -> ('n, 'y_cd) vec -> unit
axpy ?alpha x y
executes y := alpha * x + y
with scalar value alpha
,
and vectors x
and y
.alpha
: default = 1.0
val iamax : ('n, 'cd) vec -> int
iamax x
returns the index of the maximum value of all elements in x
.val amax : ('n, 'cd) vec -> num_type
amax x
finds the maximum value of all elements in x
.val gemv : ?beta:num_type ->
?y:('m, 'y_cd) vec ->
trans:('a_m * 'a_n, 'm * 'n, [< `N | `T ]) trans3 ->
?alpha:num_type ->
('a_m, 'a_n, 'a_cd) mat ->
('n, 'x_cd) vec -> ('m, 'y_cd) vec
gemv ?beta ?y ~trans ?alpha a x
executes
y := alpha * OP(a) * x + beta * y
.beta
: default = 0.0
trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).alpha
: default = 1.0
val gbmv : m:'a_m Slap_size.t ->
?beta:num_type ->
?y:('m, 'y_cd) vec ->
trans:('a_m * 'a_n, 'm * 'n, [< `N | `T ]) trans3 ->
?alpha:num_type ->
(('a_m, 'a_n, 'kl, 'ku) Slap_size.geband, 'a_n, 'a_cd) mat ->
'kl Slap_size.t ->
'ku Slap_size.t -> ('n, 'x_cd) vec -> ('m, 'y_cd) vec
gbmv ~m ?beta ?y ~trans ?alpha a kl ku x
computes
y := alpha * OP(a) * x + beta * y
where a
is a band matrix stored in
band storage.y
, which is overwritten.beta
: default = 0.0
trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).alpha
: default = 1.0
val symv : ?beta:num_type ->
?y:('n, 'y_cd) vec ->
?up:[< `L | `U ] Slap_common.uplo ->
?alpha:num_type ->
('n, 'n, 'a_cd) mat ->
('n, 'x_cd) vec -> ('n, 'y_cd) vec
symv ?beta ?y ?up ?alpha a x
executes
y := alpha * a * x + beta * y
.beta
: default = 0.0
up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.alpha
: default = 1.0
val trmv : trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
?up:[< `L | `U ] Slap_common.uplo ->
('n, 'n, 'a_cd) mat -> ('n, 'x_cd) vec -> unit
trmv ~trans ?diag ?up a x
executes x := OP(a) * x
.trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = Slap_common.non_unit
diag
= Slap_common.unit
, then a
is unit triangular;diag
= Slap_common.non_unit
, then a
is not unit triangular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val trsv : trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
?up:[< `L | `U ] Slap_common.uplo ->
('n, 'n, 'a_cd) mat -> ('n, 'b_cd) vec -> unit
trmv ~trans ?diag ?up a b
solves linear system OP(a) * x = b
and destructively assigns x
to b
.trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = Slap_common.non_unit
diag
= Slap_common.unit
, then a
is unit triangular;diag
= Slap_common.non_unit
, then a
is not unit triangular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val tpmv : trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
?up:[< `L | `U ] Slap_common.uplo ->
('n Slap_size.packed, Slap_misc.cnt) vec ->
('n, 'x_cd) vec -> unit
tpmv ~trans ?diag ?up a x
executes x := OP(a) * x
where a
is a packed triangular matrix.trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = Slap_common.non_unit
diag
= Slap_common.unit
, then a
is unit triangular;diag
= Slap_common.non_unit
, then a
is not unit triangular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val tpsv : trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
?up:[< `L | `U ] Slap_common.uplo ->
('n Slap_size.packed, Slap_misc.cnt) vec ->
('n, 'x_cd) vec -> unit
tpsv ~trans ?diag ?up a b
solves linear system OP(a) * x = b
and destructively assigns x
to b
where a
is a packed triangular
matrix.trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = Slap_common.non_unit
diag
= Slap_common.unit
, then a
is unit triangular;diag
= Slap_common.non_unit
, then a
is not unit triangular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val gemm : ?beta:num_type ->
?c:('m, 'n, 'c_cd) mat ->
transa:('a_m * 'a_k, 'm * 'k, [< `N | `T ]) trans3 ->
?alpha:num_type ->
('a_m, 'a_k, 'a_cd) mat ->
transb:('b_k * 'b_n, 'k * 'n, [< `N | `T ]) trans3 ->
('b_k, 'b_n, 'b_cd) mat -> ('m, 'n, 'c_cd) mat
gemm ?beta ?c ~transa ?alpha a ~transb b
executes
c := alpha * OP(a) * OP(b) + beta * c
.beta
: default = 0.0
transa
: the transpose flag for a
:transa
= Slap_common.normal
, then OP(a)
= a
;transa
= Slap_common.trans
, then OP(a)
= a^T
;transa
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).alpha
: default = 1.0
transb
: the transpose flag for b
:transb
= Slap_common.normal
, then OP(b)
= b
;transb
= Slap_common.trans
, then OP(b)
= b^T
;transb
= Slap_common.conjtr
, then OP(b)
= b^H
(the conjugate transpose of b
).val symm : side:('k, 'm, 'n) Slap_common.side ->
?up:[< `L | `U ] Slap_common.uplo ->
?beta:num_type ->
?c:('m, 'n, 'c_cd) mat ->
?alpha:num_type ->
('k, 'k, 'a_cd) mat ->
('m, 'n, 'b_cd) mat -> ('m, 'n, 'c_cd) mat
symm ~side ?up ?beta ?c ?alpha a b
executes
c := alpha * a * b + beta * c
(if side
= Slap_common.left
) orc := alpha * b * a + beta * c
(if side
= Slap_common.right
)a
is a symmterix matrix, and b
and c
are general matrices.side
: the side flag to specify direction of multiplication of a
and
b
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.beta
: default = 0.0
alpha
: default = 1.0
val trmm : side:('k, 'm, 'n) Slap_common.side ->
?up:[< `L | `U ] Slap_common.uplo ->
transa:('k * 'k, 'k * 'k, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
?alpha:num_type ->
a:('k, 'k, 'a_cd) mat -> ('m, 'n, 'b_cd) mat -> unit
trmm ~side ?up ~transa ?diag ?alpha ~a b
executes
b := alpha * OP(a) * b
(if side
= Slap_common.left
) orb := alpha * b * OP(a)
(if side
= Slap_common.right
)a
is a triangular matrix, and b
is a general matrix.side
: the side flag to specify direction of multiplication of a
and
b
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.transa
: the transpose flag for a
:transa
= Slap_common.normal
, then OP(a)
= a
;transa
= Slap_common.trans
, then OP(a)
= a^T
;transa
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = Slap_common.non_unit
diag
= Slap_common.unit
, then a
is unit triangular;diag
= Slap_common.non_unit
, then a
is not unit triangular.alpha
: default = 1.0
val trsm : side:('k, 'm, 'n) Slap_common.side ->
?up:[< `L | `U ] Slap_common.uplo ->
transa:('k * 'k, 'k * 'k, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
?alpha:num_type ->
a:('k, 'k, 'a_cd) mat -> ('m, 'n, 'b_cd) mat -> unit
trsm ~side ?up ~transa ?diag ?alpha ~a b
solves a system of linear
equations
OP(a) * x = alpha * b
(if side
= Slap_common.left
) orx * OP(a) = alpha * b
(if side
= Slap_common.right
)a
is a triangular matrix, and b
is a general matrix.
The solution x
is returned by b
.side
: the side flag to specify direction of multiplication of a
and
b
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.transa
: the transpose flag for a
:transa
= Slap_common.normal
, then OP(a)
= a
;transa
= Slap_common.trans
, then OP(a)
= a^T
;transa
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = Slap_common.non_unit
diag
= Slap_common.unit
, then a
is unit triangular;diag
= Slap_common.non_unit
, then a
is not unit triangular.alpha
: default = 1.0
val syrk : ?up:[< `L | `U ] Slap_common.uplo ->
?beta:num_type ->
?c:('n, 'n, 'c_cd) mat ->
trans:('a_n * 'a_k, 'n * 'k, [< `N | `T ]) Slap_common.trans2 ->
?alpha:num_type ->
('a_n, 'a_k, 'a_cd) mat -> ('n, 'n, 'c_cd) mat
syrk ?up ?beta ?c ~trans ?alpha a
executes
c := alpha * a * a^T + beta * c
(if trans
= Slap_common.normal
) orc := alpha * a^T * a + beta * c
(if trans
= Slap_common.trans
)a
is a general matrix and c
is a symmetric matrix.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.beta
: default = 0.0
trans
: the transpose flag for a
alpha
: default = 1.0
val syr2k : ?up:[< `L | `U ] Slap_common.uplo ->
?beta:num_type ->
?c:('n, 'n, 'c_cd) mat ->
trans:('p * 'q, 'n * 'k, [< `N | `T ]) Slap_common.trans2 ->
?alpha:num_type ->
('p, 'q, 'a_cd) mat ->
('p, 'q, 'b_cd) mat -> ('n, 'n, 'c_cd) mat
syr2k ?up ?beta ?c ~trans ?alpha a b
computes
c := alpha * a * b^T + alpha * b * a^T + beta * c
(if trans
= Slap_common.normal
) orc := alpha * a^T * b + alpha * b^T * a + beta * c
(if trans
= Slap_common.trans
)c
, and general matrices a
and b
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.beta
: default = 0.0
trans
: the transpose flag for a
alpha
: default = 1.0
val lacpy : ?uplo:[< `A | `L | `U ] Slap_common.uplo ->
?b:('m, 'n, 'b_cd) mat ->
('m, 'n, 'a_cd) mat -> ('m, 'n, 'b_cd) mat
lacpy ?uplo ?b a
copies the matrix a
into the matrix b
.b
, which is overwritten.uplo
: default = Slap_common.upper_lower
uplo
= Slap_common.upper
,
then the upper triangular part of a
is copied;uplo
= Slap_common.lower
,
then the lower triangular part of a
is copied.b
: default = a fresh matrix.val lassq : ?scale:float -> ?sumsq:float -> ('n, 'cd) vec -> float * float
lassq ?scale ?sumsq x
(scl, smsq)
where scl
and smsq
satisfy
scl^2 * smsq = x1^2 + x2^2 + ... + xn^2 + scale^2 * smsq
.scale
: default = 0.0
sumsq
: default = 1.0
typelarnv_liseed =
Slap_size.four
val larnv : ?idist:[ `Normal | `Uniform0 | `Uniform1 ] ->
?iseed:(larnv_liseed, Slap_misc.cnt) Slap_common.int32_vec ->
x:('n, Slap_misc.cnt) vec -> unit -> ('n, 'cnt) vec
larnv ?idist ?iseed ~x ()
generates a random vector with the random
distribution specified by idist
and random seed iseed
.x
, which is overwritten.idist
: default = `Normal
iseed
: a four-dimensional integer vector with all ones.type ('m, 'a)
lange_min_lwork
val lange_min_lwork : 'm Slap_size.t ->
([< `F | `I | `M | `O ] as 'a) Slap_common.norm4 ->
('m, 'a) lange_min_lwork Slap_size.t
lange_min_lwork m norm
computes the minimum length of workspace for
lange
routine. m
is the number of rows in a matrix, and norm
is
the sort of matrix norms.val lange : ?norm:[< `F | `I | `M | `O ] Slap_common.norm4 ->
?work:('lwork, Slap_misc.cnt) rvec ->
('m, 'n, 'cd) mat -> float
lange ?norm ?work a
a
.norm
: default = Slap_common.norm_1
.norm
= Slap_common.norm_1
, the one norm is returned;norm
= Slap_common.norm_inf
, the infinity norm is returned;norm
= Slap_common.norm_amax
, the largest absolute value of
elements in matrix a
(not a matrix norm) is returned;norm
= Slap_common.norm_frob
, the Frobenius norm is returned.work
: default = an optimum-length vector.val lauum : ?up:[< `L | `U ] Slap_common.uplo -> ('n, 'n, 'cd) mat -> unit
lauum ?up a
computes
U * U^T
where U
is the upper triangular part of matrix a
if up
is Slap_common.upper
.L^T * L
where L
is the lower triangular part of matrix a
if up
is Slap_common.lower
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val getrf : ?ipiv:(('m, 'n) Slap_size.min, Slap_misc.cnt) Slap_common.int32_vec ->
('m, 'n, 'cd) mat ->
(('m, 'n) Slap_size.min, 'cnt) Slap_common.int32_vec
getrf ?ipiv a
computes LU factorization of matrix a
using partial
pivoting with row interchanges: a = P * L * U
where P
is a permutation
matrix, and L
and U
are lower and upper triangular matrices,
respectively. the permutation matrix is returned in ipiv
.Failure
if the matrix is singular.ipiv
, which is overwritten.val getrs : ?ipiv:(('n, 'n) Slap_size.min, Slap_misc.cnt) Slap_common.int32_vec ->
trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
('n, 'n, 'a_cd) mat -> ('n, 'n, 'b_cd) mat -> unit
getrs ?ipiv trans a b
solves systems of linear equations OP(a) * x = b
where a
a 'n
-by-'n
general matrix, each column of matrix b
is the
r.h.s. vector, and each column of matrix x
is the corresponding solution.
The solution x
is returned in b
.Failure
if the matrix is singular.ipiv
: a result of gesv
or getrf
. It is internally computed by
getrf
if omitted.trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).type 'n
getri_min_lwork
val getri_min_lwork : 'n Slap_size.t -> 'n getri_min_lwork Slap_size.t
getri_min_lwork n
computes the minimum length of workspace for getri
routine. n
is the number of columns or rows in a matrix.val getri_opt_lwork : ('n, 'n, 'cd) mat -> (module Slap_size.SIZE)
getri_opt_lwork a
computes the optimal length of workspace for getri
routine.val getri : ?ipiv:(('n, 'n) Slap_size.min, Slap_misc.cnt) Slap_common.int32_vec ->
?work:('lwork, Slap_misc.cnt) vec -> ('n, 'n, 'cd) mat -> unit
getri ?ipiv ?work a
computes the inverse of general matrix a
by
LU-factorization. The inverse matrix is returned in a
.Failure
if the matrix is singular.ipiv
: a result of gesv
or getrf
. It is internally computed by
getrf
if omitted.work
: default = an optimum-length vector.type
sytrf_min_lwork
val sytrf_min_lwork : unit -> sytrf_min_lwork Slap_size.t
sytrf_min_lwork ()
computes the minimum length of workspace for sytrf
routine.val sytrf_opt_lwork : ?up:[< `L | `U ] Slap_common.uplo ->
('n, 'n, 'cd) mat -> (module Slap_size.SIZE)
sytrf_opt_lwork ?up a
computes the optimal length of workspace for sytrf
routine.up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.val sytrf : ?up:[< `L | `U ] Slap_common.uplo ->
?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
?work:('lwork, Slap_misc.cnt) vec ->
('n, 'n, 'cd) mat -> ('n, 'cnt) Slap_common.int32_vec
sytrf ?up ?ipiv ?work a
factorizes symmetric matrix a
using the
Bunch-Kaufman diagonal pivoting method:
a = P * U * D * U^T * P^T
if up
= true
;a = P * L * D * L^T * P^T
if up
= false
P
is a permutation matrix, U
and L
are upper and lower
triangular matrices with unit diagonal, and D
is a symmetric
block-diagonal matrix. The permutation matrix is returned in ipiv
.Failure
if a
is singular.ipiv
, which is overwritten.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.work
: default = an optimum-length vector.val sytrs : ?up:[< `L | `U ] Slap_common.uplo ->
?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
('n, 'n, 'a_cd) mat -> ('n, 'nrhs, 'b_cd) mat -> unit
sytrs ?up ?ipiv a b
solves systems of linear equations a * x = b
where
a
is a symmetric matrix, each column of matrix b
is the r.h.s. vector,
and each column of matrix x
is the corresponding solution.
The solution x
is returned in b
.
This routine uses the Bunch-Kaufman diagonal pivoting method:
a = P * U * D * U^T * P^T
if up
= true
;a = P * L * D * L^T * P^T
if up
= false
P
is a permutation matrix, U
and L
are upper and lower
triangular matrices with unit diagonal, and D
is a symmetric
block-diagonal matrix.Failure
if a
is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.ipiv
: a result of sytrf
. It is internally computed by sytrf
if
omitted.type 'n
sytri_min_lwork
val sytri_min_lwork : 'n Slap_size.t -> 'n sytri_min_lwork Slap_size.t
sytri_min_lwork ()
computes the minimum length of workspace for sytri
routine.val sytri : ?up:[< `L | `U ] Slap_common.uplo ->
?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
?work:('lwork, Slap_misc.cnt) vec -> ('n, 'n, 'cd) mat -> unit
sytri ?up ?ipiv ?work a
computes the inverse of symmetric matrix a
using
the Bunch-Kaufman diagonal pivoting method:
a = P * U * D * U^T * P^T
if up
= true
;a = P * L * D * L^T * P^T
if up
= false
P
is a permutation matrix, U
and L
are upper and lower
triangular matrices with unit diagonal, and D
is a symmetric
block-diagonal matrix.Failure
if a
is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.ipiv
: a result of sytrf
. It is internally computed by sytrf
if
omitted.work
: default = an optimum-length vector.val potrf : ?up:[< `L | `U ] Slap_common.uplo ->
?jitter:num_type -> ('n, 'n, 'cd) mat -> unit
potrf ?up ?jitter a
computes the Cholesky factorization of symmetrix
(Hermitian) positive-definite matrix a
:
a = U^T * U
(real) or a = U^H * U
(complex) if up
= true
;a = L * L^T
(real) or a = L * L^H
(complex) if up
= false
U
and L
are upper and lower triangular matrices, respectively.
Either of them is returned in the upper or lower triangular part of a
,
as specified by up
.Failure
if a
is not positive-definite symmetric.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.jitter
: default = nothingval potrs : ?up:[< `L | `U ] Slap_common.uplo ->
('n, 'n, 'a_cd) mat ->
?factorize:bool ->
?jitter:num_type -> ('n, 'nrhs, 'b_cd) mat -> unit
potrf ?up a ?jitter b
solves systems of linear equations a * x = b
using
the Cholesky factorization of symmetrix (Hermitian) positive-definite matrix
a
:
a = U^T * U
(real) or a = U^H * U
(complex)
if up
= Slap_common.upper
;a = L * L^T
(real) or a = L * L^H
(complex)
if up
= Slap_common.lower
U
and L
are upper and lower triangular matrices, respectively.Failure
if a
is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.factorize
: default = true
(potrf
is called implicitly)jitter
: default = nothingval potri : ?up:[< `L | `U ] Slap_common.uplo ->
?factorize:bool ->
?jitter:num_type -> ('n, 'n, 'cd) mat -> unit
potrf ?up ?jitter a
computes the inverse of symmetrix (Hermitian)
positive-definite matrix a
using the Cholesky factorization:
a = U^T * U
(real) or a = U^H * U
(complex)
if up
= Slap_common.upper
;a = L * L^T
(real) or a = L * L^H
(complex)
if up
= Slap_common.lower
U
and L
are upper and lower triangular matrices, respectively.Failure
if a
is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.factorize
: default = true
(potrf
is called implicitly)jitter
: default = nothingval trtrs : ?up:[< `L | `U ] Slap_common.uplo ->
trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
('n, 'n, 'a_cd) mat -> ('n, 'nrhs, 'b_cd) mat -> unit
trtrs ?up trans ?diag a b
solves systems of linear equations
OP(a) * x = b
where a
is a triangular matrix of order 'n
, each column
of matrix b
is the r.h.s vector, and each column of matrix x
is the
corresponding solution. The solution x
is returned in b
.Failure
if a
is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.trans
: the transpose flag for a
:trans
= Slap_common.normal
, then OP(a)
= a
;trans
= Slap_common.trans
, then OP(a)
= a^T
;trans
= Slap_common.conjtr
, then OP(a)
= a^H
(the conjugate transpose of a
).diag
: default = `N
diag
= `U
, then a
is unit triangular;diag
= `N
, then a
is not unit triangular.val tbtrs : kd:'kd Slap_size.t ->
?up:[< `L | `U ] Slap_common.uplo ->
trans:('n * 'n, 'n * 'n, [< `N | `T ]) trans3 ->
?diag:Slap_common.diag ->
(('n, 'kd) Slap_size.syband, 'n, 'a_cd) mat ->
('n, 'nrhs, 'b_cd) mat -> unit
tbtrs ~kd ?up ~trans ?diag ab b
solves systems of linear equations
OP(A) * x = b
where A
is a triangular band matrix with kd
subdiagonals,
each column of matrix b
is the r.h.s vector, and each column of matrix x
is the corresponding solution. Matrix A
is stored into ab
in band
storage format. The solution x
is returned in b
.Failure
if the matrix A
is singular.kd
: the number of subdiagonals or superdiagonals in A
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of A
is used;up
= Slap_common.lower
,
then the lower triangular part of A
is used.trans
: the transpose flag for A
:trans
= Slap_common.normal
, then OP(A)
= A
;trans
= Slap_common.trans
, then OP(A)
= A^T
;trans
= Slap_common.conjtr
, then OP(A)
= A^H
(the conjugate transpose of A
).diag
: default = `N
diag
= `U
, then A
is unit triangular;diag
= `N
, then A
is not unit triangular.val trtri : ?up:[< `L | `U ] Slap_common.uplo ->
?diag:Slap_common.diag -> ('n, 'n, 'cd) mat -> unit
trtri ?up ?diag a
computes the inverse of triangular matrix a
. The
inverse matrix is returned in a
.Failure
if the matrix a
is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of A
is used;up
= Slap_common.lower
,
then the lower triangular part of A
is used.diag
: default = `N
diag
= `U
, then a
is unit triangular;diag
= `N
, then a
is not unit triangular.type 'n
geqrf_min_lwork
val geqrf_min_lwork : n:'n Slap_size.t -> 'n geqrf_min_lwork Slap_size.t
geqrf_min_lwork ~n
computes the minimum length of workspace for geqrf
routine. n
is the number of columns in a matrix.val geqrf_opt_lwork : ('m, 'n, 'cd) mat -> (module Slap_size.SIZE)
geqrf_opt_lwork a
computes the optimum length of workspace for geqrf
routine.val geqrf : ?work:('lwork, Slap_misc.cnt) vec ->
?tau:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
('m, 'n, 'cd) mat -> (('m, 'n) Slap_size.min, 'cnt) vec
geqrf ?work ?tau a
computes the QR factorization of general matrix a
:
a = Q * R
where Q
is an orthogonal (unitary) matrix and R
is an
upper triangular matrix. R
is returned in a
. This routine does not
generate Q
explicitly. It is generated by orgqr
.tau
, which is overwritten.work
: default = an optimum-length vector.val gesv : ?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
('n, 'n, 'a_cd) mat -> ('n, 'nrhs, 'b_cd) mat -> unit
gesv ?ipiv a b
solves a system of linear equations a * x = b
where a
is a 'n
-by-'n
general matrix, each column of matrix b
is the r.h.s.
vector, and each column of matrix x
is the corresponding solution.
This routine uses LU factorization: a = P * L * U
with permutation matrix
P
, a lower triangular matrix L
and an upper triangular matrix U
.
By this function, the upper triangular part of a
is replaced by U
, the
lower triangular part by L
, and the solution x
is returned in b
.
Since 0.2.0
Raises Failure
if the matrix is singular.
val gbsv : ?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
(('n, 'n, 'kl, 'ku) Slap_size.luband, 'n, 'a_cd) mat ->
'kl Slap_size.t -> 'ku Slap_size.t -> ('n, 'nrhs, 'b_cd) mat -> unit
gbsv ?ipiv ab kl ku b
solves a system of linear equations A * X = B
where A
is a 'n
-by-'n
band matrix, each column of matrix B
is the
r.h.s. vector, and each column of matrix X
is the corresponding solution.
The matrix A
with kl
subdiagonals and ku
superdiagonals is stored into
ab
in band storage format for LU factorizaion.
This routine uses LU factorization: A = P * L * U
with permutation matrix
P
, a lower triangular matrix L
and an upper triangular matrix U
.
By this function, the upper triangular part of A
is replaced by U
, the
lower triangular part by L
, and the solution X
is returned in B
.
Since 0.2.0
Raises Failure
if the matrix is singular.
val posv : ?up:[< `L | `U ] Slap_common.uplo ->
('n, 'n, 'a_cd) mat -> ('n, 'nrhs, 'b_cd) mat -> unit
posv ?up a b
solves systems of linear equations a * x = b
where a
is
a 'n
-by-'n
symmetric positive-definite matrix, each column of matrix b
is the r.h.s vector, and each column of matrix x
is the corresponding
solution. The solution x
is returned in b
.
The Cholesky decomposition is used:
up
= Slap_common.upper
,
then a = U^T * U
(real) or a = U^H * U
(complex)up
= Slap_common.lower
,
then a = L^T * L
(real) or a = L^H * L
(complex)U
and L
are the upper and lower triangular matrices, respectively.Failure
if the matrix is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val ppsv : ?up:[< `L | `U ] Slap_common.uplo ->
('n Slap_size.packed, Slap_misc.cnt) vec ->
('n, 'nrhs, 'b_cd) mat -> unit
ppsv ?up a b
solves systems of linear equations a * x = b
where a
is
a 'n
-by-'n
symmetric positive-definite matrix stored in packed format,
each column of matrix b
is the r.h.s vector, and each column of matrix x
is the corresponding solution. The solution x
is returned in b
.
up
= Slap_common.upper
,
then a = U^T * U
(real) or a = U^H * U
(complex)up
= Slap_common.lower
,
then a = L^T * L
(real) or a = L^H * L
(complex)U
and L
are the upper and lower triangular matrices, respectively.Failure
if the matrix is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.val pbsv : ?up:[< `L | `U ] Slap_common.uplo ->
kd:'kd Slap_size.t ->
(('n, 'kd) Slap_size.syband, 'n, 'ab_cd) mat ->
('n, 'nrhs, 'b_cd) mat -> unit
pbsv ?up ~kd ab b
solves systems of linear equations ab * x = b
where
ab
is a 'n
-by-'n
symmetric positive-definite band matrix with kd
subdiangonals, stored in band storage format, each column of matrix b
is
the r.h.s vector, and each column of matrix x
is the corresponding
solution. The solution x
is returned in b
.
This routine uses the Cholesky decomposition:
up
= Slap_common.upper
,
then a = U^T * U
(real) or a = U^H * U
(complex)up
= Slap_common.lower
,
then a = L^T * L
(real) or a = L^H * L
(complex)U
and L
are the upper and lower triangular matrices, respectively.Failure
if the matrix is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.kd
: the number of subdiagonals or superdiagonals in ab
.val ptsv : ('n, Slap_misc.cnt) vec ->
('n Slap_size.p, Slap_misc.cnt) vec ->
('n, 'nrhs, 'b_cd) mat -> unit
ptsv d e b
solves systems of linear equations A * x = b
where A
is a
'n
-by-'n
symmetric positive-definite tridiagonal matrix with diagonal
elements d
and subdiagonal elements e
, each column of matrix b
is the
r.h.s vector, and each column of matrix x
is the corresponding solution.
The solution x
is returned in b
.
This routine uses the Cholesky decomposition: A = L^T * L
(real) or
A = L^H * L
(complex) where L
is a lower triangular matrix.
Since 0.2.0
Raises Failure
if the matrix is singular.
type
sysv_min_lwork
val sysv_min_lwork : unit -> sysv_min_lwork Slap_size.t
sysv_min_lwork ()
computes the minimum length of workspace for sysv
routine.val sysv_opt_lwork : ?up:[< `L | `U ] Slap_common.uplo ->
('n, 'n, 'a_cd) mat ->
('n, 'nrhs, 'b_cd) mat -> (module Slap_size.SIZE)
sysv_opt_lwork ?up a b
computes the optimal length of workspace for sysv
routine.val sysv : ?up:[< `L | `U ] Slap_common.uplo ->
?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
?work:('lwork, Slap_misc.cnt) vec ->
('n, 'n, 'a_cd) mat -> ('n, 'nrhs, 'b_cd) mat -> unit
sysv ?up ?ipiv ?work a b
solves systems of linear equations a * x = b
where a
is a 'n
-by-'n
symmetric matrix, each column of matrix b
is
the r.h.s. vector, and each column of matrix x
is the corresponding
solution. The solution x
is returned in b
.
The diagonal pivoting method is used:
up
= Slap_common.upper
, then a = U * D * U^T
up
= Slap_common.lower
, then a = L * D * L^T
where U
and L
are the upper and lower triangular matrices, respectively.Failure
if the matrix is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.ipiv
: a result of sytrf
. It is internally computed by sytrf
if
omitted.work
: default = an optimum-length vector.val spsv : ?up:[< `L | `U ] Slap_common.uplo ->
?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
('n Slap_size.packed, Slap_misc.cnt) vec ->
('n, 'nrhs, 'b_cd) mat -> unit
spsv ?up a b
solves systems of linear equations a * x = b
where a
is
a 'n
-by-'n
symmetric matrix stored in packed format, each column of
matrix b
is the r.h.s. vector, and each column of matrix x
is the
corresponding solution. The solution x
is returned in b
.
The diagonal pivoting method is used:
up
= Slap_common.upper
, then a = U * D * U^T
up
= Slap_common.lower
, then a = L * D * L^T
where U
and L
are the upper and lower triangular matrices, respectively.Failure
if the matrix is singular.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.ipiv
: a result of sytrf
. It is internally computed by sytrf
if
omitted.type ('m, 'n, 'nrhs)
gels_min_lwork
val gels_min_lwork : m:'m Slap_size.t ->
n:'n Slap_size.t ->
nrhs:'nrhs Slap_size.t -> ('m, 'n, 'nrhs) gels_min_lwork Slap_size.t
gels_min_lwork ~n
computes the minimum length of workspace for gels
routine.m
: the number of rows in a matrix.n
: the number of columns in a matrix.nrhs
: the number of right hand sides.val gels_opt_lwork : trans:('am * 'an, 'm * 'n, [< `N | `T ]) Slap_common.trans2 ->
('am, 'an, 'a_cd) mat ->
('m, 'nrhs, 'b_cd) mat -> (module Slap_size.SIZE)
gels_opt_lwork ~trans a b
computes the optimum length of workspace for
gels
routine.val gels : ?work:('work, Slap_misc.cnt) vec ->
trans:('am * 'an, 'm * 'n, [< `N | `T ]) Slap_common.trans2 ->
('am, 'an, 'a_cd) mat -> ('m, 'nrhs, 'b_cd) mat -> unit
gels ?work ~trans a b
solves an overdetermined or underdetermined system
of linear equations using QR or LU factorization.
trans
= Slap_common.normal
and 'm >= 'n
: find the least square
solution to an overdetermined system by minimizing ||b - A * x||^2
.trans
= Slap_common.normal
and 'm < 'n
: find the minimum norm
solution to an underdetermined system a * x = b
.trans
= Slap_common.trans
, and 'm >= 'n
: find the minimum norm
solution to an underdetermined system a^H * x = b
.trans
= Slap_common.trans
and 'm < 'n
: find the least square
solution to an overdetermined system by minimizing ||b - A^H * x||^2
.work
: default = an optimum-length vector.trans
: the transpose flag for a
.val dot : ('n, 'x_cd) vec -> ('n, 'y_cd) vec -> float
dot x y
x
and y
.val asum : ('n, 'x_cd) vec -> float
asum x
x
.val sbmv : k:'k Slap_size.t ->
?y:('n, 'y_cd) vec ->
(('n, 'k) Slap_size.syband, 'n, 'a_cd) mat ->
?up:[< `L | `U ] Slap_common.uplo ->
?alpha:float ->
?beta:float -> ('n, 'x_cd) vec -> ('n, 'y_cd) vec
sbmv ~k ?y a ?up ?alpha ?beta x
computes y := alpha * a * x + beta * y
where a
is a 'n
-by-'n
symmetric band matrix with k
super-(or sub-)diagonals, and x
and y
are 'n
-dimensional vectors.y
, which is overwritten.k
: the number of superdiangonals or subdiangonalsup
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.alpha
: default = 1.0
beta
: default = 0.0
val ger : ?alpha:float ->
('m, 'x_cd) vec ->
('n, 'y_cd) vec ->
('m, 'n, 'a_cd) mat -> ('m, 'n, 'a_cd) mat
ger ?alpha x y a
computes a := alpha * x * y^T + a
with
the general matrix a
, the vector x
and
the transposed vector y^T
of y
.a
, which is overwritten.alpha
: default = 1.0
val syr : ?alpha:float ->
?up:[< `L | `U ] Slap_common.uplo ->
('n, 'x_cd) vec ->
('n, 'n, 'a_cd) mat -> ('n, 'n, 'a_cd) mat
syr ?alpha x a
computes a := alpha * x * x^T + a
with
the symmetric matrix a
, the vector x
and
the transposed vector x^T
of x
.a
, which is overwritten.alpha
: default = 1.0
up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.type ('m, 'a)
lansy_min_lwork
val lansy_min_lwork : 'n Slap_size.t ->
([< `F | `I | `M | `O ] as 'a) Slap_common.norm4 ->
('n, 'a) lansy_min_lwork Slap_size.t
lansy_min_lwork n norm
computes the minimum length of workspace for
lansy
routine. n
is the number of rows or columns in a matrix.
norm
is a matrix norm.val lansy : ?up:[< `L | `U ] Slap_common.uplo ->
?norm:[< `F | `I | `M | `O ] Slap_common.norm4 ->
?work:('lwork, Slap_misc.cnt) vec -> ('n, 'n, 'cd) mat -> float
lansy ?up ?norm ?work a
a
.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.norm
: default = Slap_common.norm_1
norm
= Slap_common.norm_1
, the one norm is returned;norm
= Slap_common.norm_inf
, the infinity norm is returned;norm
= Slap_common.norm_amax
, the largest absolute value of
elements in matrix a
(not a matrix norm) is returned;norm
= Slap_common.norm_frob
, the Frobenius norm is returned.work
: default = an optimum-length vector.val lamch : [ `B | `E | `L | `M | `N | `O | `P | `R | `S | `U ] -> float
lamch cmach
see LAPACK documentation.type 'n
orgqr_min_lwork
val orgqr_min_lwork : n:'n Slap_size.t -> 'n orgqr_min_lwork Slap_size.t
orgqr_min_lwork ~n
computes the minimum length of workspace for
orgqr
routine. n
is the number of columns in a matrix.val orgqr_opt_lwork : tau:('k, Slap_misc.cnt) vec ->
('m, 'n, 'cd) mat -> (module Slap_size.SIZE)
orgqr_min_lwork ~tau a
computes the optimum length of workspace for
orgqr
routine.val orgqr_dyn : ?work:('lwork, Slap_misc.cnt) vec ->
tau:('k, Slap_misc.cnt) vec -> ('m, 'n, 'cd) mat -> unit
orgqr_dyn ?work ~tau a
generates the orthogonal matrix Q
of the QR
factorization formed by geqrf
/geqpf
.Invalid_argument
if the following inequality is not satisfied:
(Mat.dim1 a) >= (Mat.dim2 a) >= (Vec.dim tau)
,
i.e., 'm >= 'n >= 'k
.work
: default = an optimum-length vectortau
: a result of geqrf
type ('r, 'm, 'n)
ormqr_min_lwork
val ormqr_min_lwork : side:('r, 'm, 'n) Slap_common.side ->
m:'m Slap_size.t ->
n:'n Slap_size.t -> ('r, 'm, 'n) ormqr_min_lwork Slap_size.t
ormqr_min_lwork ~side ~m ~n
computes the minimum length of workspace for
ormqr
routine.side
: the side flag to specify direction of matrix multiplication.m
: the number of rows in a matrix.n
: the number of columns in a matrix.val ormqr_opt_lwork : side:('r, 'm, 'n) Slap_common.side ->
trans:('r * 'r, 'r * 'r, [< `N | `T ]) Slap_common.trans2 ->
tau:('k, Slap_misc.cnt) vec ->
('r, 'k, 'a_cd) mat ->
('m, 'n, 'c_cd) mat -> (module Slap_size.SIZE)
ormqr_opt_lwork ~side ~trans ~tau a c
computes the optimum length of
workspace for ormqr
routine.side
: the side flag to specify direction of matrix multiplication.trans
: the transpose flag for orthogonal matrix Q
.tau
: a result of geqrf
.val ormqr_dyn : side:('r, 'm, 'n) Slap_common.side ->
trans:('r * 'r, 'r * 'r, [< `N | `T ]) Slap_common.trans2 ->
?work:('lwork, Slap_misc.cnt) vec ->
tau:('k, Slap_misc.cnt) vec ->
('r, 'k, 'a_cd) mat -> ('m, 'n, 'c_cd) mat -> unit
ormqr_dyn ~side ~trans ?work ~tau a c
multiplies a matrix c
by the
orthogonal matrix Q
of the QR factorization formed by geqrf
/geqpf
:
Q * c
if side
= Slap_common.left
and
trans
= Slap_common.normal
;Q^T * c
if side
= Slap_common.left
and
trans
= Slap_common.trans
;c * Q
if side
= Slap_common.right
and
trans
= Slap_common.normal
;c * Q^T
if side
= Slap_common.right
and
trans
= Slap_common.trans
.Invalid_argument
if the following inequality is not satisfied:'m >= 'k
if side
= Slap_common.left
;'n >= 'k
if side
= Slap_common.right
.side
: the side flag to specify direction of matrix multiplication of
Q
and c
.trans
: the transpose flag for orthogonal matrix Q
.work
: default = an optimum-length vector.tau
: a result of geqrf
.type 'n
gecon_min_lwork
val gecon_min_lwork : 'n Slap_size.t -> 'n gecon_min_lwork Slap_size.t
gecon_min_lwork n
computes the minimum length of workspace work
for
gecon
routine. n
is the number of rows or columns in a matrix.type 'n
gecon_min_liwork
val gecon_min_liwork : 'n Slap_size.t -> 'n gecon_min_liwork Slap_size.t
gecon_min_liwork n
computes the minimum length of workspace iwork
for
gecon
routine. n
is the number of rows or columns in a matrix.val gecon : ?norm:[< `I | `O ] Slap_common.norm2 ->
?anorm:float ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
('n, 'n, 'cd) mat -> float
gecon ?norm ?anorm ?work ?iwork a
estimates the reciprocal of the
condition number of general matrix a
.norm
: default = Slap_common.norm_1
.norm
= Slap_common.norm_1
, the one norm is returned;norm
= Slap_common.norm_inf
, the infinity norm is returned.anorm
: default = the norm of matrix a
as returned by lange
.work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.type 'n
sycon_min_lwork
val sycon_min_lwork : 'n Slap_size.t -> 'n sycon_min_lwork Slap_size.t
sycon_min_lwork n
computes the minimum length of workspace work
for
sycon
routine. n
is the number of rows or columns in a matrix.type 'n
sycon_min_liwork
val sycon_min_liwork : 'n Slap_size.t -> 'n sycon_min_liwork Slap_size.t
sycon_min_liwork n
computes the minimum length of workspace iwork
for
sycon
routine. n
is the number of rows or columns in a matrix.val sycon : ?up:[< `L | `U ] Slap_common.uplo ->
?ipiv:('n, Slap_misc.cnt) Slap_common.int32_vec ->
?anorm:float ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
('n, 'n, 'cd) mat -> float
sycon ?up ?ipiv ?anorm ?work ?iwork a
estimates the reciprocal of the
condition number of symmetric matrix a
. Since a
is symmetric, the
1-norm is equal to the infinity norm.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.ipiv
: a result of sytrf
. It is internally computed by sytrf
if
omitted.anorm
: default = the norm of matrix a
as returned by lange
.work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.type 'n
pocon_min_lwork
val pocon_min_lwork : 'n Slap_size.t -> 'n pocon_min_lwork Slap_size.t
pocon_min_lwork n
computes the minimum length of workspace work
for
pocon
routine. n
is the number of rows or columns in a matrix.type 'n
pocon_min_liwork
val pocon_min_liwork : 'n Slap_size.t -> 'n pocon_min_liwork Slap_size.t
pocon_min_liwork n
computes the minimum length of workspace iwork
for
pocon
routine. n
is the number of rows or columns in a matrix.val pocon : ?up:[< `L | `U ] Slap_common.uplo ->
?anorm:float ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
('n, 'n, 'cd) mat -> float
pocon ?up ?anorm ?work ?iwork a
estimates the reciprocal of the
condition number of symmetric positive-definite matrix a
.
Since a
is symmetric, the 1-norm is equal to the infinity norm.up
: default = Slap_common.upper
up
= Slap_common.upper
,
then the upper triangular part of a
is used;up
= Slap_common.lower
,
then the lower triangular part of a
is used.anorm
: default = the norm of matrix a
as returned by lange
.work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.type ('m, 'n, 'nrhs)
gelsy_min_lwork
val gelsy_min_lwork : m:'m Slap_size.t ->
n:'n Slap_size.t ->
nrhs:'nrhs Slap_size.t -> ('m, 'n, 'nrhs) gelsy_min_lwork Slap_size.t
gelsy_min_lwork ~m ~n ~nrhs
computes the minimum length of workspace for
gelsy
routine.m
: the number of rows in a matrix.n
: the number of columns in a matrix.nrhs
: the number of right hand sides.val gelsy_opt_lwork : ('m, 'n, 'a_cd) mat ->
('n, 'nrhs, 'b_cd) mat -> (module Slap_size.SIZE)
gelsy_opt_lwork a b
computes the optimum length of workspace for
gelsy
routine.val gelsy : ('m, 'n, 'a_cd) mat ->
?rcond:float ->
?jpvt:('n, Slap_misc.cnt) Slap_common.int32_vec ->
?work:('lwork, Slap_misc.cnt) vec ->
('n, 'nrhs, 'b_cd) mat -> int
gelsy a ?rcond ?jpvt ?work b
computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||
) using a complete
orthogonal factorization of a
.a
.rcond
: default = -1.0
(machine precision)jpvt
: default = a 'n
-dimensional vector.work
: default = an optimum-length vector.type ('m, 'n, 'nrhs)
gelsd_min_lwork
val gelsd_min_lwork : m:'m Slap_size.t ->
n:'n Slap_size.t ->
nrhs:'nrhs Slap_size.t -> ('m, 'n, 'nrhs) gelsd_min_lwork Slap_size.t
gelsd_min_lwork ~m ~n ~nrhs
computes the minimum length of workspace for
gelsd
routine.m
: the number of rows in a matrix.n
: the number of columns in a matrix.nrhs
: the number of right hand sides.val gelsd_opt_lwork : ('m, 'n, 'a_cd) mat ->
('n, 'nrhs, 'b_cd) mat -> (module Slap_size.SIZE)
gelsd_opt_lwork a b
computes the optimum length of workspace for
gelsd
routine.type ('m, 'n, 'nrhs)
gelsd_min_iwork
val gelsd_min_iwork : 'm Slap_size.t ->
'n Slap_size.t -> ('m, 'n, 'nrhs) gelsd_min_iwork Slap_size.t
gelsd_min_iwork ~m ~n ~nrhs
computes the minimum length of workspace
iwork
for gelsd
routine.val gelsd : ('m, 'n, 'a_cd) mat ->
?rcond:float ->
?s:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) vec ->
('n, 'nrhs, 'b_cd) mat -> int
gelsd a ?rcond ?jpvt ?work b
computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||
) using the singular
value decomposition (SVD) of a
and a divide and conquer method.Failure
if the function fails to converge.a
.rcond
: default = -1.0
(machine precision)s
: the singular values of a
in decreasing order.
They are implicitly computed if omitted.work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.type ('m, 'n, 'nrhs)
gelss_min_lwork
val gelss_min_lwork : m:'m Slap_size.t ->
n:'n Slap_size.t ->
nrhs:'nrhs Slap_size.t -> ('m, 'n, 'nrhs) gelss_min_lwork Slap_size.t
gelss_min_lwork ~m ~n ~nrhs
computes the minimum length of workspace for
gelss
routine.m
: the number of rows in a matrix.n
: the number of columns in a matrix.nrhs
: the number of right hand sides.val gelss_opt_lwork : ('m, 'n, 'a_cd) mat ->
('n, 'nrhs, 'b_cd) mat -> (module Slap_size.SIZE)
gelss_min_lwork a b
computes the optimum length of workspace for
gelss
routine.val gelss : ('m, 'n, 'a_cd) mat ->
?rcond:float ->
?s:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
?work:('lwork, Slap_misc.cnt) vec ->
('n, 'nrhs, 'b_cd) mat -> int
gelss a ?rcond ?work b
computes the minimum-norm solution to a
linear least square problem (minimize ||b - a * x||
) using the singular
value decomposition (SVD) of a
.Failure
if the function fails to converge.a
.rcond
: default = -1.0
(machine precision)s
: the singular values of a
in decreasing order.
They are implicitly computed if omitted.work
: default = an optimum-length vector.type ('m, 'n)
gesvd_min_lwork
val gesvd_min_lwork : m:'m Slap_size.t ->
n:'n Slap_size.t -> ('m, 'n) gesvd_min_lwork Slap_size.t
gesvd_min_lwork ~m ~n
computes the minimum length of workspace for
gesvd
routine.m
: the number of rows in a matrix.n
: the number of columns in a matrix.val gesvd_opt_lwork : jobu:('u_cols, 'm, ('m, 'n) Slap_size.min, Slap_size.z, Slap_size.z)
Slap_common.svd_job ->
jobvt:('vt_rows, 'n, ('m, 'n) Slap_size.min, Slap_size.z, Slap_size.z)
Slap_common.svd_job ->
?s:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
?u:('m, 'u_cols, 'u_cd) mat ->
?vt:('vt_rows, 'n, 'vt_cd) mat ->
('m, 'n, 'a_cd) mat -> (module Slap_size.SIZE)
gesvd_opt_lwork ~jobu ~jobvt ?s ?u ?vt
computes the optimum length of
workspace for gesvd
routine.jobu
: the SVD job flag for u
.jobvt
: the SVD job flag for vt
.s
: a return location for singular values.u
: a return location for left singular vectors.vt
: a return location for (transposed) right singular vectors.val gesvd : jobu:('u_cols, 'm, ('m, 'n) Slap_size.min, Slap_size.z, Slap_size.z)
Slap_common.svd_job ->
jobvt:('vt_rows, 'n, ('m, 'n) Slap_size.min, Slap_size.z, Slap_size.z)
Slap_common.svd_job ->
?s:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
?u:('m, 'u_cols, 'u_cd) mat ->
?vt:('vt_rows, 'n, 'vt_cd) mat ->
?work:('lwork, Slap_misc.cnt) vec ->
('m, 'n, 'a_cd) mat ->
(('m, 'n) Slap_size.min, 'cnt) vec * ('m, 'u_cols, 'cnt) mat *
('vt_rows, 'n, 'cnt) mat
gesvd ?jobu ?jobvt ?s ?u ?vt ?work a
computes the singular value
decomposition (SVD) of 'm
-by-'n
general rectangular matrix a
:
a = U * D * V^T
where
D
is an 'm
-by-'n
matrix (the diagonal elements in D
are singular
values in descreasing order, and other elements are zeros),U
is an 'm
-by-'m
orthogonal matrix (the columns in U
are left
singular vectors), andV
is an 'n
-by-'n
orthogonal matrix (the columns in V
are right
singular vectors).(s, u, vt)
with singular values s
in descreasing order,
left singular vectors u
and right singular vectors vt
.jobu
: the SVD job flag for u
:jobu
= Slap_common.svd_all
, then all 'm
columns of U
are
returned in u
. ('u_cols
= 'm
.)jobu
= Slap_common.svd_top
, then the first ('m, 'n) min
columns of U
are returned in u
. ('u_cols
= ('m, 'n) min
.)jobu
= Slap_common.svd_overwrite
, then the first ('m, 'n) min
columns of U
are overwritten on a
. ('u_cols
= z
since u
is unused.)jobu
= Slap_common.svd_no
, then no columns of U
are computed.
('u_cols
= z
.)jobvt
: the SVD job flag for vt
:jobvt
= Slap_common.svd_all
, then all 'n
rows of V^T
are
returned in vt
. ('vt_rows
= 'n
.)jobvt
= Slap_common.svd_top
, then the first ('m, 'n) min
rows of V^T
are returned in vt
. ('vt_rows
= ('m, 'n) min
.)jobvt
= Slap_common.svd_overwrite
, then the first ('m, 'n) min
rows of V^T
are overwritten on a
. ('vt_cols
= z
since vt
is unused.)jobvt
= Slap_common.svd_no
, then no columns of V^T
are
computed. ('vt_cols
= z
.)s
: a return location for singular values.
(default = an implicitly allocated vector.)u
: a return location for left singular vectors.
(default = an implicitly allocated matrix.)vt
: a return location for (transposed) right singular vectors.
(default = an implicitly allocated matrix.)work
: default = an optimum-length vector.
(Note: jobu
and jobvt
cannot both be Slap_common.svd_overwrite
.)
type ('m, 'n)
gesdd_liwork
val gesdd_liwork : m:'m Slap_size.t ->
n:'n Slap_size.t -> ('m, 'n) gesdd_liwork Slap_size.t
gesdd_liwork ~m ~n
computes the length of workspace iwork
for
gesdd
routine.m
: the number of rows in a matrix.n
: the number of columns in a matrix.type ('m, 'n, 'jobz)
gesdd_min_lwork
val gesdd_min_lwork : jobz:('u_cols * 'vt_rows, 'm * 'n,
('m, 'n) Slap_size.min * ('m, 'n) Slap_size.min, 'm * 'n,
Slap_size.z * Slap_size.z)
Slap_common.svd_job ->
m:'m Slap_size.t ->
n:'n Slap_size.t ->
unit -> ('m, 'n, 'u_cols * 'vt_rows) gesdd_min_lwork Slap_size.t
gesdd_min_lwork ~m ~n
computes the minimum length of workspace work
for
gesdd
routine.jobz
: the SVD job flag.m
: the number of rows in a matrix.n
: the number of columns in a matrix.val gesdd_opt_lwork : jobz:('u_cols * 'vt_rows, 'm * 'n,
('m, 'n) Slap_size.min * ('m, 'n) Slap_size.min, 'm * 'n,
Slap_size.z * Slap_size.z)
Slap_common.svd_job ->
?s:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
?u:('m, 'u_cols, 'u_cd) mat ->
?vt:('vt_rows, 'n, 'vt_cd) mat ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
('m, 'n, 'a_cd) mat -> (module Slap_size.SIZE)
gesdd_opt_lwork ~jobz ?s ?u ?vt ?iwork a
computes the optimum length of
workspace work
for gesdd
routine.jobz
: the SVD job flag.s
: a return location for singular values.
(default = an implicitly allocated vector.)u
: a return location for left singular vectors.
(default = an implicitly allocated matrix.)vt
: a return location for (transposed) right singular vectors.
(default = an implicitly allocated matrix.)iwork
: default = an optimum-length vector.val gesdd : jobz:('u_cols * 'vt_rows, 'm * 'n,
('m, 'n) Slap_size.min * ('m, 'n) Slap_size.min, 'm * 'n,
Slap_size.z * Slap_size.z)
Slap_common.svd_job ->
?s:(('m, 'n) Slap_size.min, Slap_misc.cnt) vec ->
?u:('m, 'u_cols, 'u_cd) mat ->
?vt:('vt_rows, 'n, 'vt_cd) mat ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
('m, 'n, 'a_cd) mat ->
(('m, 'n) Slap_size.min, 'cnt) vec *
('m, 'u_cols, 'u_cd) mat option *
('vt_rows, 'n, 'vt_cd) mat option
gesdd ~jobz ?s ?u ?vt ?work ?iwork a
computes the singular value
decomposition (SVD) of general rectangular matrix a
using a divide and
conquer method: a = U * D * V^T
where
D
is an 'm
-by-'n
matrix (the diagonal elements in D
are singular
values in descreasing order, and other elements are zeros),U
is an 'm
-by-'m
orthogonal matrix (the columns in U
are left
singular vectors), andV
is an 'n
-by-'n
orthogonal matrix (the columns in V
are right
singular vectors).(s, u, vt)
with singular values s
in descreasing order,
left singular vectors u
and right singular vectors vt
.
If u
(vt
) is not needed, None
is returned.jobz
: the SVD job flag:jobz
is Slap_common.svd_all
, all 'm
columns of U
and all 'n
rows of V^T
are returned in u
and vt
.
('u_cols
= 'm
and 'vt_rows
= 'n
.)jobz
is Slap_common.svd_top
, the first ('m, 'n) min
columns of
U
and the first ('m, 'n) min
rows of V^T
are returned in u
and
vt
. ('u_cols
= ('m, 'n) min
and 'vt_rows
= ('m, 'n) min
.)jobz
is Slap_common.svd_overwrite
, then
'm >= 'n
, a
is overwritten with the first ('m, 'n) min
columns
of U
, and all 'n
rows of V^T
is returned in vt
, thus vt
is
'n
-by-'n
and u
is not used;'m < 'n
, a
is overwritten with the first ('m, 'n) min
rows of
V^T
, and all 'm
columns of U
is returned in u
; thereby u
is
'm
-by-'m
and vt
is not used.'u_cols
= 'm
and 'vt_rows
= 'n
, but either u
or
vt
should be omitted.)jobz
is Slap_common.svd_no
, no singular vectors are computed.
('u_cols
= z
and 'vt_rows
= z
.)s
: a return location for singular values.
(default = an implicitly allocated vector.)u
: a return location for left singular vectors.
(default = an implicitly allocated matrix.)vt
: a return location for (transposed) right singular vectors.
(default = an implicitly allocated matrix.)work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.val geev_min_lwork : ?vectors:bool -> 'n Slap_size.t -> (module Slap_size.SIZE)
geev_min_lwork ?vectors n
computes the minimum length of workspace for
geev
routine. n
is the number of rows or columns of a matrix.vectors
: whether eigenvectors are computed, or not.
(default = true
, i.e., they are computed.)val geev_opt_lwork : ?vl:('n, 'n, 'vl_cd) mat option ->
?vr:('n, 'n, 'vr_cd) mat option ->
?wr:('n, Slap_misc.cnt) vec ->
?wi:('n, Slap_misc.cnt) vec ->
('n, 'n, 'a_cd) mat -> (module Slap_size.SIZE)
geev_opt_lwork ?vl ?vr ?wr ?vi a
computes the optimum length of workspace
for geev
routine.vl
: a return location for left eigenvectors. See LAPACK GEEV
documentation for details about storage of complex eigenvectors.
(default = an implicitly allocated matrix.)vl
= None
, left eigenvectors are not computed;vl
= Some vl
, left eigenvectors are computed.vr
: a return location for right eigenvectors. See LAPACK GEEV
documentation for details about storage of complex eigenvectors.
(default = an implicitly allocated matrix.)vr
= None
, right eigenvectors are not computed;vr
= Some vr
, right eigenvectors are computed.wr
: a return location for real parts of eigenvalues.
(default = an implicitly allocated vector.)wi
: a return location for imaginary parts of eigenvalues.
(default = an implicitly allocated vector.)val geev : ?work:('lwork, Slap_misc.cnt) vec ->
?vl:('n, 'n, 'vl_cd) mat option ->
?vr:('n, 'n, 'vr_cd) mat option ->
?wr:('n, Slap_misc.cnt) vec ->
?wi:('n, Slap_misc.cnt) vec ->
('n, 'n, 'a_cd) mat ->
('n, 'n, 'vl_cd) mat option * ('n, Slap_misc.cnt) vec *
('n, Slap_misc.cnt) vec * ('n, 'n, 'vr_cd) mat option
geev ?work ?vl ?vr ?wr ?wi a
computes the eigenvalues and the left and
right eigenvectors of 'n
-by-'n
nonsymmetric matrix a
:
Let w(j)
is the j
-th eigenvalue of a
. The j
-th right eigenvector
vr(j)
satisfies a * vr(j) = w(j) * vr(j)
, and the j
-th left
eigenvector vl(j)
satisfies vl(j)^H * a = vl(j)^H * w(j)
where vl(j)^H
denotes the conjugate transpose of vl(j)
. The computed eigenvalues are
normalized by Euclidian norm.
Raises Failure
if the function fails to converge.
Returns (vl, wr, wi, vr)
where vl
and vr
are left and right
eigenvectors, and wr
and wi
are the real and imaginary parts
of eigenvalues. If vl
(vr
) is an empty matrix, None
is set.
work
: default = an optimum-length vector.vl
: a return location for left eigenvectors. See LAPACK GEEV
documentation for details about storage of complex eigenvectors.
(default = an implicitly allocated matrix.)vl
= None
, left eigenvectors are not computed;vl
= Some vl
, left eigenvectors are computed.vr
: a return location for right eigenvectors. See LAPACK GEEV
documentation for details about storage of complex eigenvectors.
(default = an implicitly allocated matrix.)vr
= None
, right eigenvectors are not computed;vr
= Some vr
, right eigenvectors are computed.wr
: a return location for real parts of eigenvalues.
(default = an implicitly allocated vector.)wi
: a return location for imaginary parts of eigenvalues.
(default = an implicitly allocated vector.)type 'n
syev_min_lwork
val syev_min_lwork : 'n Slap_size.t -> 'n syev_min_lwork Slap_size.t
syev_min_lwork n
computes the minimum length of workspace for
syev
routine. n
is the number of rows or columns of a matrix.val syev_opt_lwork : ?vectors:bool ->
?up:bool -> ('n, 'n, 'cd) mat -> (module Slap_size.SIZE)
syev_opt_lwork ?vectors ?up a
computes the optimum length of workspace for
syev
routine.vectors
: whether eigenvectors are computed, or not.
(default = false
.)vectors
= true
, eigenvectors are computed and returned in a
.vectors
= false
, eigenvectors are not computed.up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.val syev : ?vectors:bool ->
?up:bool ->
?work:('lwork, Slap_misc.cnt) vec ->
?w:('n, Slap_misc.cnt) vec ->
('n, 'n, 'cd) mat -> ('n, 'cnt) vec
syev ?vectors ?up ?work ?w a
computes the eigenvalues and the eigenvectors
of 'n
-by-'n
symmetric matrix a
.Failure
if the function fails to converge.w
of eigenvalues in ascending order.vectors
: whether eigenvectors are computed, or not.
(default = false
.)vectors
= true
, eigenvectors are computed and returned in a
.vectors
= false
, eigenvectors are not computed.up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.work
: default = an optimum-length vector.w
: a return location for eigenvalues.
(default = an implicitly allocated vector.)val syevd_min_lwork : vectors:bool -> 'n Slap_size.t -> (module Slap_size.SIZE)
syevd_min_lwork ?vectors n
computes the minimum length of workspace work
for syevd
routine. n
is the number of rows or columns of a matrix.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)val syevd_min_liwork : vectors:bool -> 'n Slap_size.t -> (module Slap_size.SIZE)
syevd_min_liwork ?vectors n
computes the minimum length of workspace
iwork
for syevd
routine. n
is the number of rows or columns of a
matrix.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)val syevd_opt_lwork : ?vectors:bool ->
?up:bool -> ('n, 'n, 'cd) mat -> (module Slap_size.SIZE)
syevd_opt_lwork ?vectors ?up a
computes the optimum length of workspace
work
for syevd
routine.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.val syevd_opt_liwork : ?vectors:bool ->
?up:bool -> ('n, 'n, 'cd) mat -> (module Slap_size.SIZE)
syevd_opt_liwork ?vectors ?up a
computes the optimum length of workspace
iwork
for syevd
routine.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.val syevd : ?vectors:bool ->
?up:bool ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
?w:('n, Slap_misc.cnt) vec ->
('n, 'n, 'a_cd) mat -> ('n, 'w_cd) vec
syev ?vectors ?up ?w a
computes the eigenvalues and the eigenvectors of
'n
-by-'n
symmetric matrix a
using divide and conquer method.Failure
if the function fails to converge.w
of eigenvalues in ascending order.vectors
: whether eigenvectors are computed, or not.
(default = false
.)vectors
= true
, eigenvectors are computed and returned in a
.vectors
= false
, eigenvectors are not computed.up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.w
: a return location for eigenvalues.
(default = an implicitly allocated vector.)type 'n
sbev_min_lwork
val sbev_min_lwork : 'n Slap_size.t -> 'n sbev_min_lwork Slap_size.t
sbev_min_lwork n
computes the minimum length of workspace work
for sbev
routine. n
is the number of rows or columns of a matrix.val sbev : kd:'kd Slap_size.t ->
?z:('n, 'n, 'z_cd) mat ->
?up:bool ->
?work:('lwork, Slap_misc.cnt) vec ->
?w:('n, Slap_misc.cnt) vec ->
(('n, 'kd) Slap_size.syband, 'n, 'a_cd) mat -> ('n, 'cnt) vec
sbev ~kd ?z ?up ?work ?w ab
computes all eigenvalues and, optionally,
eigenvectors of real symmetric band matrix ab
store in band storage
format.Failure
if the function fails to converge.w
, which is overwritten.kd
: the number of subdiagonals or superdiagonals.z
: The eigenvectors are returned in z
if it is given.
They are not computed if omitted.up
: default = true
up
= true
, then the upper triangular part of ab
is used;up
= false
, then the lower triangular part of ab
is used.work
: workspace for sbev
w
: w
is replaced by eigenvalues if it is given, or newly
allocated if omitted.type 'n
syevr_min_lwork
val syevr_min_lwork : 'n Slap_size.t -> 'n syevr_min_lwork Slap_size.t
sbevr_min_lwork n
computes the minimum length of workspace work
for syevr
routine. n
is the number of rows or columns of a matrix.type 'n
syevr_min_liwork
val syevr_min_liwork : 'n Slap_size.t -> 'n syevr_min_liwork Slap_size.t
sbevr_min_liwork n
computes the minimum length of workspace iwork
for syevr
routine. n
is the number of rows or columns of a matrix.val syevr_opt_lwork : ?vectors:bool ->
?range:[ `A | `I of int * int | `V of float * float ] ->
?up:bool ->
?abstol:float -> ('n, 'n, 'a_cd) mat -> (module Slap_size.SIZE)
sbevr_opt_lwork ?vectors ?range ?up ?abstol a
computes the optimum length
of workspace work
for syevr
routine.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)range
: default = `A
.up
: default = true
.abstol
: The absolute error tolerance to which each eigenvalue or
eigenvector is required. (default = lamch `S
.)val syevr_opt_liwork : ?vectors:bool ->
?range:[ `A | `I of int * int | `V of float * float ] ->
?up:bool ->
?abstol:float -> ('n, 'n, 'a_cd) mat -> (module Slap_size.SIZE)
sbevr_opt_liwork ?vectors ?range ?up ?abstol a
computes the optimum length
of workspace iwork
for sbevr
routine.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)range
: default = `A
.up
: default = true
.abstol
: The absolute error tolerance to which each eigenvalue or
eigenvector is required. (default = lamch `S
.)module type SYEVR_RESULT =sig
..end
syevr_dyn
.
val syevr_dyn : ?vectors:bool ->
?range:[ `A | `I of int * int | `V of float * float ] ->
?up:bool ->
?abstol:float ->
?work:('lwork, Slap_misc.cnt) vec ->
?iwork:('liwork, Slap_misc.cnt) Slap_common.int32_vec ->
?w:('n, Slap_misc.cnt) vec ->
?z:('n, 'k, 'z_cd) mat ->
?isuppz:(('k, 'k) Slap_size.add, Slap_misc.cnt) Slap_common.int32_vec ->
('n, 'n, 'a_cd) mat -> (module Slap_D.SYEVR_RESULT with type n = 'n)
syevr_dyn ?vectors ?range ?up ?abstol ?work ?iwork ?w ?z ?isuppz a
computes selected eigenvalues w
and, optionally, eigenvectors z
of a
real symmetric matrix a
using the Relatively Robust Representations.
Usage:
let f (type nn) ... =
...
let (a : (nn, nn, _) mat) = ... in
let module X = (val syevr_dyn ?vectors ?range ?up ?abstol
?work ?iwork ?w ?z ?isuppz a
: SYEVR_RESULT with type n = nn) in
let (m, w, z, isuppz) = X.value in
...
where type nn
is the size of symmetric matrix a
.
The returned module X
contains tuple X.value = (m, w, z, isuppz)
and
type X.m
for representation of the number of computed eigenvalues:
m : X.m Slap_size.t
is the number of eigenvalues.w : (X.n, _) vec
contains the m
eigenvalues in ascending order.z : (X.n, X.m, _) mat
contains the m
eigenvectors of dimension
n
in the same order.2*m
-dimensional vector
isuppz : ((m, m) Slap.Slap_size.add, _) Slap_common.int32_vec
indicates the
nonzero elements in z
.Invalid_argument
if not X.m <= 'k
X
.vectors
: whether eigenvectors are computed, or not.
(default = false
.)vectors
= true
, eigenvectors are computed and returned in a
.vectors
= false
, eigenvectors are not computed.range
: default = `A
range
= `A
, all eigenvalues are computed.range
= `I (il, iu)
, eigenvalues with indices il
to iu
are
computed.range
= `V (vl, vu)
, the routine computes eigenvalues w(i)
in
the half-open interval: vl < w(i) <= vu
where vl <= vu
.up
: default = true
up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.abstol
: The absolute error tolerance to which each eigenvalue or
eigenvector is required. (default = lamch `S
.)work
: default = an optimum-length vector.iwork
: default = an optimum-length vector.w
: a return location for eigenvalues.
(default = an implicitly allocated vector of the minimum
required dimension.)z
: a return location for eigenvectors.
(default = an implicitly allocated matrix of the minimum
required dimension.)isuppz
: a return location for a vector to indicate the nonzero
elements in z
.
(default = an implicitly allocated matrix of the minimum
required dimension.)val sygv_opt_lwork : ?vectors:bool ->
?up:bool ->
?itype:[ `AB | `A_B | `BA ] ->
('n, 'n, 'a_cd) mat ->
('n, 'n, 'b_cd) mat -> (module Slap_size.SIZE)
sygv_opt_lwork ?vectors ?up ?itype a b
computes the optimum length of
workspace work
for sbevr
routine.vectors
: whether eigenvectors are computed, or not.
(default = false
, i.e., they are not computed.)up
: default = true
.itype
: the behavior of this routine.val sygv : ?vectors:bool ->
?up:bool ->
?work:('lwork, Slap_misc.cnt) vec ->
?w:('n, Slap_misc.cnt) vec ->
?itype:[ `AB | `A_B | `BA ] ->
('n, 'n, 'a_cd) mat ->
('n, 'n, 'b_cd) mat -> ('n, 'cnt) vec
sygv ?vectors ?up ?work ?w ?itype a b
solves a real generalized symmetric
definite eigenproblem:
a * x = lambda * b * x
if itype
is `A_B
;a * b * x = lambda * x
if itype
is `AB
;b * a * x = lambda * x
if itype
is `BA
a
is a 'n
-by-'n
symmetric matrix, and b
is a 'n
-by-'n
symmetric positive definite matrix.Failure
if the function fails to converge.Failure
if the function fails to converge.w
of eigenvalues in ascending order.vectors
: whether eigenvectors are computed, or not.
(default = false
.)vectors
= true
, eigenvectors are computed and returned in a
.vectors
= false
, eigenvectors are not computed.up
: default = true
.up
= true
, then the upper triangular part of a
is used;up
= false
, then the lower triangular part of a
is used.work
: default = an optimum-length workspace.w
: a return location for eigenvalues.
(default = an implicitly allocated vector.)itype
: the behavior of this routine.val sbgv : ka:'ka Slap_size.t ->
kb:'kb Slap_size.t ->
?z:('n, 'n, 'z_cd) mat ->
?up:bool ->
?work:('lwork, Slap_misc.cnt) vec ->
?w:('n, Slap_misc.cnt) vec ->
(('n, 'ka) Slap_size.syband, 'n, 'ab_cd) mat ->
(('n, 'kb) Slap_size.syband, 'n, 'bb_cd) mat -> ('n, 'cnt) vec
sbgv ~ka ~kb ?z ?up ?work ?w ab bb
solves a general eigenvalue problem
ab * z = (lambda) * bb * z
where ab
is a 'n
-by-'n
symmetric band
matrix with ka
subdiagonals, and bb
is a 'n
-by-'n
symmetric
positive-definite band matrix with kb
subdiagonals. Both ab
and bb
are stored in band storage format.Failure
if the function fails to converge.w
, which is overwritten.ka
: the number of subdiagonals or superdiagonals of ab
.kb
: the number of subdiagonals or superdiagonals of bb
.z
: The eigenvectors are returned in z
if it is given.
They are not computed if omitted.up
: default = true
up
= true
, then the upper triangular part of ab
is used;up
= false
, then the lower triangular part of ab
is used.work
: workspace for sbgv
w
: w
is replaced by eigenvalues if it is given, or newly
allocated if omitted.