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1 Introduction

This document elaborates on the changes required for Sized GPR (https://github.com/akabe/sgpr),
a porting of OCaml-GPR (https://bitbucket.org/mmottl/gpr) version 1.1.3 from Lacaml (https://
bitbucket.org/mmottl/lacaml) to our interface SLAP (Sized Linear Algebra Package, https://github.
com/akabe/slap). See the paper https://akabe.github.com/sgpr/paper.pdf for details of SLAP.

We have developed a linear algebra library interface called “SLAP” that guarantees consistency
(with respect to dimensions) of matrix (and vector) operations by using generative phantom types as
fresh identifiers for statically checking the equality of sizes (i.e., dimensions). SLAP is implemented as
a ”more statically typed” wrapper of Lacaml, which does not statically ensure the consistency of sizes.
To evaluate the usability of SLAP, we ported the OCaml-GPR library from Lacaml.

To investigate the kinds and numbers of changes required for the porting, we added uniquely-formed
comments (*! ... *) on the changed lines in the SGPR source code. We classified them into 19 categories
as follows:

• Mechanical changes

1. Conversion from sizes to integers (S2I)

2. Replacing of size constants (SC)

3. Replacing of size operations (SOP)

4. Conversion from integers to sizes (I2S)

5. Replacing of index-based accesses (IDX)

6. Replacing of flags (RF)

7. Insertion of flags (IF)

8. Using of subvectors and submatrices (SUB)

9. Eta-conversion (ETA)

10. Replacing of identifiers (RID)

11. Removing of dynamic checks (RMDC)

12. Insertion of type parameters (ITP)

• Manual changes

12. Insertion of type annotations (ITA)

13. Optional arguments to labeled arguments (O2L)

14. Escaping generative phantom types (EGPT)

15. Function types that depend on values of arguments (FT)

16. Expression types that depend on values of free variables (ET)

17. Fitting of signatures (FS)

18. Default kernel size (DKS)

We next explain the kinds of changes made through simple examples.
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2 Mechanical changes

Twelve of the required kinds of changes could be made mechanically (i.e., automatically). They accounted
for most of the lines of code requiring a change (see Section 4 for details).

2.1 Conversion from sizes to integers (S2I)

The following code can be compiled in Lacaml but not in SLAP.

let n = Vec.dim x in
for i = 1 to n do ... done

The variable n is a size since Vec.dim : (’n,_) vec -> ’n size, while an integer is required between to
and do. (A size is a value that has a singleton type ’n size on natural numbers; i.e., evaluation of a term
with type ’n size always results in the natural number corresponding to ’n.)

To write the code, we needed to write conversion from a size to an integer as follows:

let n = Vec.dim x in
for i = 1 to Slap.Size.to_int n (*! S2I *) do ... done

The label S2I was placed on lines requiring this kind of change.

2.2 Replacing of size constants (SC)

The following code results in the creation of a 1-by-n matrix a.

let a = Mat.create 1 n

It is ill-typed since the integer 1 is passed to a size argument of Mat.create. Thus, the integer constant
had to be replaced with the corresponding size constant:

let a = Mat.create Slap.Size.one (*! SC *) n

or

module N = Slap.Size.Of_int_dyn(struct let value = 1 end) (*! SC *)
let a = Mat.create N.value (*! SC *) n

(The functor Slap.Size.Of_int_dyn returns a module N containing the size N.value that has the type
N.n size with a generative phantom type N.n as a package of an existential quantified sized type like
∃n. n vec.)

2.3 Replacing of size operations (SOP)

It was necessary to rewrite operations on integers with the corresponding operations on sizes when the
operands were sizes. For example, if m and n are sizes,

let a = Mat.create (m + n) n

is ill-typed since the operator + requires integers as the left and right operands. To make this code
well-typed, it was replaced with Slap.Size.add.

let a = Mat.create (Slap.Size.add m n) (*! SOP *) n

(see SLAP documentation for details of size operations).

2.4 Conversion from integers to sizes (I2S)

The following function f returns the squared norm of the product of a vector x and a randomly created
matrix.

open Lacaml.D

let f x =
let n = Random.int 100 in
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Lacaml SLAP
‘L Slap.Common.left
‘R Slap.Common.right
‘N Slap.Common.normal
‘T Slap.Common.trans
‘C Slap.Common.conjtr

Table 1: Correspondence between flags in Lacaml and SLAP

let a = Mat.random n (Vec.dim x) in
let y = gemv a x in
nrm2 y

The n parameter must be given type-level size information because it is passed to the size argument of
Mat.random. We thus rewrote it as:

open Slap.D

let f x =
let n = Random.int 100 in
let module N = Slap.Size.Of_int_dyn(struct let value = n end) in (*! I2S *)
let a = Mat.random N.value (*! I2S *) (Vec.dim x) in
let y = gemv a x in
nrm2 y

2.5 Replacing of index-based accesses (IDX)

The vector and matrix types (vec and mat) of Lacaml are implemented by using the OCaml module
Bigarray to share numerical arrays between OCaml and Fortran. In Lacaml, the syntax sugar x.{i,j}
for index-based accesses to elements of big arrays (i.e., vectors or matrices) can be used:

a.{i, j} <- x.{i + j}

In SLAP, (’n, _) vec and (’m, ’n, _) mat are abstract types: i.e., the right hand sides of the type defi-
nitions are hidden by signature. This means that the syntax sugar cannot be used since the typechecker
does not know that matrices and vectors are implemented as big arrays. Hence, the get_dyn or set_dyn
function was used instead of the syntax sugar:

Mat.set_dyn a i j (Vec.get_dyn x (i + j)) (*! IDX *)

2.6 Replacing of flags (RF)

In Lacaml, transpose flags and side flags for matrix multiplication:

trmm ˜side:‘R ˜transa:‘T ˜a b

We redefined them to represent changes in matrix type, with the change depending on the flag’s value.
Therefore, they were replaced with identifiers of SLAP:

trmm ˜side:Common.right ˜transa:Common.trans (*! RF *) ˜a b

Table 1 shows the correspondence between flags in Lacaml and SLAP.

2.7 Insertion of flags (IF)

In Lacaml, the transpose and side flag arguments are optional, i.e., they can be omitted. When the
arguments are omitted, the default values are passed. For example,

trmm ˜a b

is the same as:
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trmm ˜side:‘L ˜transa:‘N ˜a b

In SLAP, the transpose and side flag arguments are implemented as labeled arguments (which cannot
be omitted) because they represent the constraints on matrix type. This means that we had to explicitly
provide the default value (Slap.Common.normal for the transpose flags and Slap.Common.left for the side
flags):

trmm ˜side:Common.left ˜transa:Common.normal (*! IF *) ˜a b

2.8 Using of subvectors and submatrices (SUB)

All BLAS and LAPACK functions support operation on subvectors or submatrices. For instance, the
following code copies the m-by-n submatrix in a matrix a, in which element (i, j) corresponds to the
(i+ ar − 1, j + ac − 1) element of a.

lacpy ˜m ˜n ˜ar ˜ac a

Since our idea is that only size equality of sizes is ensured statically, whether the function call is
safe, i.e., the submatrix is smaller than a, cannot be verified statically. However, since adding dynamic
checks to all BLAS and LAPACK functions is undesirable because submatrix designation is auxiliary
and not essential to those functions, we defined separate functions to return a submatrix (or a subvector)
of a given matrix (or vector). That is, such operations were replaced with Slap.Vec.subvec_dyn or
Slap.Mat.submat_dyn, such as:

lacpy (Mat.submat_dyn m n ˜ar ˜ac a)

2.9 Eta-conversion (ETA)

Let f be a function that accepts two vectors that may have different dimensions and that returns unit.

let f x y = ... (* f : (’m, ’cd1) vec -> (’n, ’cd2) vec -> unit *)
let g = f Vec.empty (* g : (’_n, ’_cd2) vec -> unit *)

The function g created by partial application is not polymorphic due to value restriction1. To recover
the lost polymorphism, eta-conversion (insertion of arguments) was required:

let f x y = ... (* f : (’m, ’cd1) vec -> (’n, ’cd2) vec -> unit *)
let g y = f Vec.empty y (*! ETA *) (* g : (’n, ’cd2) vec -> unit *)

2.10 Replacing of identifiers (RID)

Several identifiers needed to be replaced; e.g.,

open Lacaml.D

was replaced with

open Slap.D (*! RID *)

2.11 Removing of dynamic checks (RMDC)

The following dynamic check is not needed in SLAP because the type dot statically ensures the equality
of the dimensions of two vectors x and y.

let f x y =
if Vec.dim x <> Vec.dim y then invalid_arg "error!";
dot x y (* dot : (’n, _) vec -> (’n, _) vec -> float *)

Thus, this code was rewritten as:

1A type parameter like ’_a can be instantiated only once.
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let f x y =
(* if Vec.dim x <> Vec.dim y then invalid_arg "error!"; *) (*! RMDC *)
dot x y

(We commented out such dynamic checks iso that we could determine the number of lines containing
this kind of change.)

2.12 Insertion of type parameters (ITP)

We changed the types vec and mat on the right hand side of a type definition to (’n, ’cd) vec and
(’m, ’n, ’cd) mat, respectively. Then the type parameters ’m, ’n, and ’cd must also be added to the left
hand side. Theoretically, it suffices to give fresh parameters to all vec and mat. For instance,

module M : sig
type t
val f : int -> t

end = struct
type t = {
n : int;
id : mat;

}
let f n =
let id = Mat.identity n in
{ n; id; }

end

was rewritten as:

module M : sig
type (’a, ’b, ’c, ’d) t
val f : ’a size -> (’a, ’a, ’a, _) t

end = struct
type (’a, ’b, ’c, ’d) t = {
n : ’a size;
id : (’b, ’c, ’d) mat;

}
let f n =
let id = Mat.identity n in
{ n; id; }

end

In the latter code, constraints of equality of sizes are unified automatically by the OCaml type inference
engine. In practice, however, doing so introduces too many parameters in the OCaml-GPR library. We
reduced the number by unifying type parameters that are known to be equal:

module M : sig
type (’n, ’cnt_or_dsc) t (*! ITP *)
val f : ’n size -> (’n, ’cnt) t (*! ITP *)

end = struct
type (’n, ’cnt_or_dsc) t = { (*! ITP *)
n : ’n size; (*! ITP *)
id : (’n, ’n, ’cnt_or_dsc) mat; (*! ITP *)

}
let f n =
let id = Mat.identity n in
{ n; id; }

end

3 Manual changes

Seven of the require kinds of changes had to be made manually. To make a finer-grained distinction in
each kind of changes, we gave them reference numbers such as [n].
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3.1 Insertion of type annotations (ITA)

When a matrix operation is implemented by low-level index-based accesses, its size constraints cannot
be inferred statically (since they are checked only at runtime): For example, consider the function axby,
which calculates αx + βy with scalar values α and, β, and vectors x and y:

open Slap.D

let axby alpha x beta y =
let n = Vec.dim x in
let z = Vec.create n in
for i = 1 to Slap.Size.to_int n do
let p = alpha *. (Vec.get_dyn x i) +. beta *. (Vec.get_dyn y i) in
Vec.set_dyn z i p

done;
z

The dimensions of vectors x and y must be the same, but OCaml infers that they may be different:

val axby : float -> (’n, _) vec -> float -> (’m, _) vec -> (’n, _) vec

There are two ways to solve this problem. One is to type-annotate axby by hand:

let axby alpha (x : (’n, _) vec) beta (y : (’n, _) vec) =
...

The other way is to use high-level operations such as scal and axpy instead of low-level operations such
as get_dyn and set_dyn:

let axby alpha x beta y =
let z = copy y in (* z = y *)
scal beta z; (* z := beta * z *)
axpy ˜alpha ˜x y; (* z := alpha * x + z *)
z

We did not use the second way because we rewrote the OCaml-GPR code to make it as simple as possible.
We encountered five such functions in OCaml-GPR:

• ITA[1]: Gpr.Cov_se_iso.Eval.Inputs.weighted_eval

• ITA[2]: Gpr.Gpr_utils.log_det

• ITA[3]: Gpr.Gpr_utils.check_sparse_row_mat_sane

• ITA[4]: Gpr.Gpr_utils.check_sparse_col_mat_sane

• ITA[5]: Gpr.Gpr_utils.check_sparse_vec_sane.

3.2 Optional arguments to labeled arguments (O2L)

The following function f accepts an integer and a unit:

open Lacaml.D

let f ?n () =
let n’ = match n with

| None -> 10
| Some n -> n in

Vec.make n’ 1.0

If the first optional argument ?n is omitted, 10 is implicitly used as its default value.
Seemingly, the code above can be rewritten as:
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open Slap.D

let f ?n () =
let n’ = match n with

| None -> Slap.Size.ten (* Slap.Size.ten : ten size *)
| Some n -> n in

Vec.make n’ 1.0

We expect that ?n:’n size -> unit -> (’n, _) vec is the type for f because it works for all n, but

val f : ?n:ten size -> unit -> (ten, _) vec

is inferred. Only Slap.Size.ten can be passed to ?n; other size values cannot be passed.
We thus replaced the optional argument with a (labeled) argument:

open Slap.D

let default_n = Slap.Size.ten (* the default value of n *)

let f ˜n () = Vec.make n 1.0

In this case, the first argument can not be omitted. The default value default_n is passed explicitly.
We applied this approach to

• O2L[1]: the optional argument n_rand_inducing and

• O2L[2]: the optional argument kernel

of Fitc_gp.Deriv_common.Optim.get_kernel_inducing. In addition, we defined functions to compute their
default values.

3.3 Escaping generative phantom types (EGPT)

Consider a function that converts an array of strings into a vector:

open Lacaml.D

let f a =
Vec.init (Array.length a) (fun i -> float_of_string a.(i-1))

let main () =
let a = [| "1"; "2"; "3" |] in
let v = f a in
Format.printf "%a\n" pp_vec v

This program can not be compiled in SLAP because Vec.init expects ’n size as the first argument,
and Array.length returns an integer. Therefore, the integer must be converted into a size value with
Size.Of_int_dyn. The following code seems intuitively correct:

open Slap.D

let f a =
let module N = Slap.Size.Of_int_dyn(struct let value = Array.length a end) in
Vec.init N.value (fun i -> float_of_string a.(i-1))

However, OCaml cannot compile this code because the generative phantom type N.n escapes its scope.
There are three ways to handle this in SLAP. One is to insert the argument n for the size of the array,

and remove the generative phantom type from the function:

open Slap.D

let f n a =
if Slap.Size.to_int n <> Array.length a then invalid_arg "error";
Vec.init n (fun i -> float_of_string a.(i-1))
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let main () =
let a = [| "1"; "2"; "3" |] in
let module N = Slap.Size.Of_int_dyn(struct let value = Array.length a end) in
let v = f N.value a in
Format.printf "%a\n" pp_vec v

In this case, whether n is equal to the length of a should be dynamically checked.
Another way is to define a functor that returns a module containing the generative phantom type:

open Slap.D

module F (A : sig val value : string array end) : VEC = struct
module N = Slap.Size.Of_int_dyn(struct let value = Array.length A.value end)
type n = N.n (* the generative phantom type *)
let value = (* val value : (n, _) vec *)
Vec.init N.value (fun i -> float_of_string A.value.(i-1))

end

let main () =
let a = [| "1"; "2"; "3" |] in
let module V = F(struct let value = a end) in
Format.printf "%a\n" pp_vec V.value

where signature VEC is defined as:

module type VEC = sig
type n (* a generative phantom type *)
val value : (n, _) vec

end

And the third way is to define f : string array -> (?, _) vec by using a first-class module instead of a
functor:

open Slap.D

let f a =
let module N = Slap.Size.Of_int_dyn(struct let value = Array.length a end) in
let module V = struct

type n = N.n
let value = Vec.init N.value (fun i -> float_of_string a.(i-1))

end in
(module V : VEC)

let main () =
let a = [| "1"; "2"; "3" |] in
let module V = (val (f a) : VEC) in
Format.printf "%a\n" pp_vec V.value

However, a type annotation of a module is required with the third way. We thus used the first way
temporarily in SGPR as follows:

• EGPT[1]: Two ’n size arguments were added to Gpr.Cov_*.Eval.Inputs.create.

• EGPT[2]: The labeled argument n_hypers : ’n size was added to Gpr.Fitc_gp.Deriv_common.Optim.get_hypers_val.

• EGPT[3]: Two ’n size arguments were added to read_training_samples in app/ocaml gpr.ml.

We plan to consider rewriting SGPR by using the third way because the first way requires dynamic
checks.

3.4 Function types that depend on values of arguments (FT)

The following function f changes the dimension of a returned vector depending on the value of the
argument b.
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open Lacaml.D

let f b n = Vec.make0 (if b then n else n + 1)

In SLAP, the expression (if b then n else Slap.Size.succ n) cannot be compiled because the terms n
and Slap.Size.succ n have different types (the former is ’n size and the latter is ’n s size). To obtain
a function type that depends on the value of b, we rewrote the above code as:

open Slap.D

module M : sig
type (’n, ’m) t
val b_tru : (’n, ’n) t
val b_fls : (’n, ’n s) t
val f : (’n, ’m) t -> ’n size -> (’m, _) vec

end = struct
type (’n, ’m) t = ’n size -> ’m size
let b_tru n = n
let b_fls n = Slap.Size.succ n
let f b n = Vec.make0 (b n)

end

The b_tru and b_fls parameters are passed to the first argument instead of true and false, respectively.
We found three such cases in OCaml-GPR:

• FT[1]: The functions SGD.create and SMD.create in the module Fitc_gp.Deriv_common.Optim have
types dependent on the value of the argument learn_sigma2 : bool. We define the constants
learn_sigma and not_learn_sigma2 to use for the argument instead of true and false.

• FT[2]: The constraint on type parameters for the record type (’D,’d,’m) Cov_se_fat.Params.params
changes depending on the value in its field tproj. This is not a function, but the required technique
is very similar.

• FT[3]: The same technique was applied to the argument n of the function read_test_samples
(app/ocaml gpr.ml).

3.5 Expression types that depend on values of free variables (ET)

The function f returns the squared norm of the product of a vector x and a randomly created matrix:

open Lacaml.D

let f b x =
let n = Vec.dim x in
let m = if b then n + 1 else n in
let a = Mat.random m n in
let y = gemv a x in
nrm2 y

This code is rewritten as:

open Slap.D

let f b x = (* f : bool -> (’n, _) vec -> float *)
let n = Vec.dim x in
let g m = (*! ET *) (* g : ’m size -> float *)
let a = Mat.random m n in
let y = gemv a x in
nrm2 y

in (*! ET *)
if b then g (Slap.Size.succ n) (*! SOP *) else g n (*! ET *)
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This change is of a kind similar to FT, but the interface of a function is not affected by this kind of
change.

We applied this kind of changes to two expressions in app/ocaml gpr.ml:

• ET[1]: The type of the expression that returns d and tproj in the function train depends on the
value of the argument args.dim_red of the function.

• ET[2]: The type of the expression that returns inputs in the function test depends on the length
of an array samples loaded from a file.

3.6 Fitting of signatures (FS)

The above-mentioned changes (including mechanical changes) are relatively local. In contrast, the FS
and DKS changes discussed here are widespread and somewhat ad hoc. Before discussing FS, we explain
several important modules in the OCaml-GPR library and their relationships. OCaml-GPR supports
kernel-based2 fitting of (nonlinear) functions. Kernel functions for the fitting are defined as modules,
and OCaml-GPR provides five predefined kernel functions (see OCaml-GPR documentation for details):

• Gpr.Cov_const

• Gpr.Cov_lin_one

• Gpr.Cov_lin_ard

• Gpr.Cov_se_iso

• Gpr.Cov_se_fat

These kernel modules cannot be used for fitting directly. To make a module suitable for fitting, a
programmer needs to pass it to the functor Gpr.Fitc_gp.Make or Gpr.Fitc_gp.Make_deriv.

3.6.1 Types of kernels

Each kernel function accepts two input vectors and parameters such as scalar values, vectors, and matri-
ces. For example, a constant kernel Cov_const calculates k(x,y) = 1/θ2 with a real constant θ, and the
kernel function of Cov_lin_ard needs a vector of automatic relevance determination (ARD) parameters
for computing the covariance of two input vectors with ARD.

The parameters are embedded in the data structure of each kernel. Thus, if the kernel requires
vectors or matrices as parameters, their type parameters are added on the left hand side of the type
definition of the kernel type (cf. Section 2.12). The number of type parameters depends on the kernel
type because the number and the types of parameters differ from each other (e.g. the kernel type has
no type parameters in Cov_const but two in Cov_lin_ard). However, all kernel modules need to be given
the same signature in order to pass them to the functor Gpr.Fitc_gp.Make or Gpr.Fitc_gp.Make_deriv.
Therefore, it is necessary to give all kernels the same type.

We fitted each kernel type to the type (’D, ’d, ’m) t of the kernel Cov_se_fat, which has the most
type parameters. It has three type parameters, but some or all of them are phantom for some modules
(e.g., all of them are phantom for Cov_const while only ’m is phantom for Cov_lin_ard.)

3.6.2 Generalization of kernel types

The kernel of Cov_se_fat contains dimensionality reduction from ’D-dimensional space to ’d-dimensional,
so ’D often differs from ’d. In contrast, in other kernels, ’D is always the same as ’d because there is no
input dimension reduction. Here we explain the safe generalization of the latter type (’d,’d,’m) t to the
former type (’D,’d,’m) t through the following simple example of a signature for modules for conversion
of input vectors. (Type parameters for subtyping of vectors and matrices are omitted.)

2A kernel method (or kernel trick) is an approach to extending a linear algorithm on the basis of inner product of the
vectors to a nonlinear one by using kernel functions.
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module type S = sig
type (’D, ’d) t
val calc_vec : (’D, ’d) t -> ’D vec -> ’d vec
val calc_mat : (’D, ’d) t -> (’D, ’n) mat -> (’d, ’n) mat

end

The calc_vec converts a ’D-dimensional input vector into a ’d-dimensional output vector. Similarly,
calc_mat converts ’n (column) vectors. ((’D, ’n) mat is a type of array of ’n vectors with dimensions of
’D.)

It is straightforward to implement conversion including dimensionality reduction (corresponding to
Cov_se_fat). For example, the module M0 calculates 2P>x with a ’D-by-’d matrix P for dimensionality
reduction and a ’D-dimensional input vector x:

module M0 : S with type (’D, ’d) t = (’D, ’d) mat = struct
type (’D, ’d) t = (’D, ’d) mat (* a matrix for dimensionality reduction *)

let calc_vec p x =
let y = gemv ˜trans:Common.trans p x (* y : ’d vec *)
scal 2.0 y;
y

let calc_mat p x =
let y = gemm ˜transa:Common.trans p ˜transb:Common.normal x (* y : (’d, ’n) mat *)
Mat.scal 2.0 y;
y

end

With a little ingenuity, we define a module for conversion that does not reduce the dimensions:

module M1 : sig
include S
val create : ’d size -> (’d, ’d) t (* constructor of (’D, ’d) t *)

end = struct
type (’D, ’d) t = (’D, ’d) mat
let create d = Mat.identity d (* return a d-by-d identity matrix *)

(* The implementation of calc_vec and calc_mat is the same as M0. *)
end

Note that the return type of create, the constructor of the abstract type (’D, ’d) t, is (’d, ’d) t, not
(’D, ’d) t. The value that can be passed to calc_vec or calc_mat is made only by create. Thus, we can
consider that a practical type for the first argument of calc_vec and calc_mat is (’d, ’d) t.

This approach is inefficient because a huge identity matrix must be multiplied when d is large. As a
more efficient approach, we used identity functions instead of the identity matrix:

module M2 : sig
include S
val create : unit -> (’d, ’d) t

end = struct
type (’D, ’d) t = {id : ’n . (’D vec -> ’d vec) * ((’D, ’n) mat -> (’d, ’n) mat)}
let create () = {id = (fun x -> x), (fun x -> x)}

let calc_vec {id = (id, _)} x =
let y = id x in (* y : ’d vec *)
scal 2 y;
y

let calc_mat {id = (_, id)} x =
let y = id x in (* y : (’d, ’n) mat *)
Mat.scal 2 y;
y

end
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First-class polymorphism (extension of OCaml) was used for the definition of (’D, ’d) M2.t. There is
also a similar solution using only ML types:

module type S3 = sig
type (’D, ’d, ’n) t (* the type parameter ’n is added. *)
val calc_vec : (’D, ’d, _) t -> ’D vec -> ’d vec
val calc_mat : (’D, ’d, ’n) t -> (’D, ’n) mat -> (’d, ’n) mat

end

module M3 : sig
include S3
val create : unit -> (’d, ’d, ’n) t

end = struct
type (’D, ’d, ’n) t = (’D vec -> ’d vec) * ((’D, ’n) mat -> (’d, ’n) mat)
let create () = (fun x -> x), (fun x -> x)
let calc_vec (id, _) x = id x
let calc_mat (_, id) x = id x

end

In the above code, the type parameter ’n is inserted on the left side hand of the type definition. The
implementation of M3 is a little simpler than that of M2, but the behavior of M3.calc_mat is not the same
as those of M1.calc_mat and M2.calc_mat; e.g., the function types for

let f1 t x y = (M1.calc_mat t x), (M1.calc_mat t y)
let f2 t x y = (M2.calc_mat t x), (M2.calc_mat t y)
let f3 t x y = (M3.calc_mat t x), (M3.calc_mat t y)

are

val f1 : (’D, ’d) M1.t -> (’D, ’m) mat -> (’D, ’n) mat -> (’d, ’m) mat * (’d, ’n) mat
val f2 : (’D, ’d) M2.t -> (’D, ’m) mat -> (’D, ’n) mat -> (’d, ’m) mat * (’d, ’n) mat
val f3 : (’D, ’d, ’n) M3.t -> (’D, ’n) mat -> (’D, ’n) mat -> (’d, ’n) mat * (’d, ’n) mat

The dimensions of the returned matrices are different for f1 and f2 but the same for f3. In other words,
the polymorphism is restricted by using M3.calc_mat. Therefore, we used M2.

3.7 Default kernel size (DKS)

Each Cov_* module provides the function Eval.Inputs.create_default_kernel_params to generate the de-
fault parameter for its kernel function. The return type of the function is (’D,(’D,ten) min,’m) Kernel.params
in Cov_se_fat but (’D,’D,’m) Kernel.params in other Cov_* modules. To give Cov_se_fat and other Cov_*
modules the same signature, we defined original type ’D default_kernel_size for the second type param-
eter of Kernel.params. With this change, the function type for the default kernel parameter became:

val create_default_kernel_params : ... -> (’D, ’D default_kernel_size, ’m) Kernel.params

The original type is defined as

type ’D default_kernel_size = (’D, Slap.Size.ten) Slap.Size.min

in Cov_se_fat and

type ’D default_kernel_size = ’D

in other Cov_* modules.

4 Results

Table 2 shows the number of lines requiring changes that could be made mechanically and the corre-
sponding percentages. The “Total” in the rightmost column is the number of lines requiring at least one
changes, which is not equal to the simple summation of all changes because a line may have required more
than one change. The number of lines for ITP was large (6.17 %) because OCaml-GPR is constructed
of several large modules, so the definitions of signatures are long. Most of the ITP changes have been
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Table 2: Number and percentage of lines requiring changes that could be made mechanically
S2I SC SOP I2S IDX RF IF SUB ETA RID RMDC ITP Total

lib/block diag.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/block diag.ml 1 0 0 0 0 0 0 0 0 1 6 1 9
lib/cov const.mli 0 0 0 0 0 0 0 0 0 0 0 5 5
lib/cov const.ml 2 0 0 0 1 0 0 0 0 2 0 9 14
lib/cov lin one.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/cov lin one.ml 0 0 0 0 1 4 2 0 0 2 0 9 17
lib/cov lin ard.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/cov lin ard.ml 7 0 0 0 10 5 2 0 0 2 0 9 32
lib/cov se iso.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/cov se iso.ml 18 4 0 0 31 0 0 0 0 2 2 14 71
lib/cov se fat.mli 0 0 0 0 0 0 0 0 0 1 0 10 11
lib/cov se fat.ml 43 9 1 0 87 2 2 0 0 2 8 23 174
lib/fitc gp.mli 0 0 0 0 0 0 0 0 0 0 0 0 0
lib/fitc gp.ml 81 3 3 0 63 19 26 14 34 3 15 69 298
lib/interfaces.ml 0 0 0 0 0 0 0 0 0 1 0 196 197
lib/gpr utils.ml 10 0 0 0 13 0 2 0 0 4 17 1 46
app/ocaml gpr.ml 13 0 2 4 10 0 0 0 0 3 0 8 35
Total 175 16 6 4 216 30 34 14 34 27 48 374 933
Percentage 2.89 0.26 0.10 0.07 3.56 0.49 0.56 0.23 0.56 0.45 0.79 6.17 15.39

Table 3: Number and percentage of lines requiring changes that had to be made manual
ITA EGPT O2L FT ET DKS FS Total

lib/block diag.mli 0 0 0 0 0 0 0 0
lib/block diag.ml 0 0 0 0 0 0 0 0
lib/cov const.mli 0 0 0 0 0 0 2 2
lib/cov const.ml 0 1 0 0 0 1 8 10
lib/cov lin one.mli 0 0 0 0 0 0 2 2
lib/cov lin one.ml 0 0 0 0 0 1 12 13
lib/cov lin ard.mli 0 0 0 0 0 0 2 2
lib/cov lin ard.ml 0 0 0 0 0 1 8 9
lib/cov se iso.mli 0 0 0 0 0 0 2 2
lib/cov se iso.ml 2 0 0 0 0 1 6 9
lib/cov se fat.mli 0 0 0 4 0 0 0 4
lib/cov se fat.ml 0 0 0 28 0 1 1 30
lib/fitc gp.mli 0 0 0 0 0 0 0 0
lib/fitc gp.ml 0 28 31 16 0 0 0 68
lib/interfaces.ml 0 11 7 5 0 3 0 26
lib/gpr utils.ml 6 0 0 0 0 0 1 7
app/ocaml gpr.ml 0 17 0 6 16 0 0 35
Total 8 57 38 59 16 8 44 219
Percentage 0.13 0.94 0.63 0.97 0.26 0.13 0.73 3.61

made in lib/interfaces.ml, which defines all signatures used in OCaml-GPR. The number for IDX was
the second largest (3.56 %) because index-based accesses are frequently used in OCaml-GPR. They are
also used when they could be replaced with high-level matrix operations such as map, etc. It should thus
be possible to reduce their number.

Table 3 shows the number and percentages of lines for which the required changes had to be made
manually, and Table 4 shows the total amounts for all changes. Overall, 18.39 % of the lines required at
least one change, out of which 15.42 % were mechanical and 3.61 % were manual. From these results,
we conjecture in general that the number of non-trivial changes required for a user program of SLAP is
small, but further investigation is necessary.
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Table 4: Number and percentage of all lines requiring changes
Lines Mechanical Manual Total

lib/block diag.mli 56 6 0 6
lib/block diag.ml 58 9 0 9
lib/cov const.mli 52 5 2 6
lib/cov const.ml 141 14 10 16
lib/cov lin one.mli 56 6 2 7
lib/cov lin one.ml 149 17 13 26
lib/cov lin ard.mli 56 6 2 7
lib/cov lin ard.ml 188 32 9 39
lib/cov se iso.mli 58 6 2 7
lib/cov se iso.ml 343 71 9 78
lib/cov se fat.mli 105 11 4 15
lib/cov se fat.ml 680 174 30 199
lib/fitc gp.mli 151 0 0 0
lib/fitc gp.ml 2294 298 68 364
lib/interfaces.ml 1008 197 26 215
lib/gpr utils.ml 229 46 7 53
app/ocaml gpr.ml 440 35 35 66
Total 6064 933 219 1113
Percentage 100.00 15.39 3.61 18.35

14


	Introduction
	Mechanical changes
	Conversion from sizes to integers (S2I)
	Replacing of size constants (SC)
	Replacing of size operations (SOP)
	Conversion from integers to sizes (I2S)
	Replacing of index-based accesses (IDX)
	Replacing of flags (RF)
	Insertion of flags (IF)
	Using of subvectors and submatrices (SUB)
	Eta-conversion (ETA)
	Replacing of identifiers (RID)
	Removing of dynamic checks (RMDC)
	Insertion of type parameters (ITP)

	Manual changes
	Insertion of type annotations (ITA)
	Optional arguments to labeled arguments (O2L)
	Escaping generative phantom types (EGPT)
	Function types that depend on values of arguments (FT)
	Expression types that depend on values of free variables (ET)
	Fitting of signatures (FS)
	Types of kernels
	Generalization of kernel types

	Default kernel size (DKS)

	Results

